List of frequently met concepts and notations

Set theory

- $|M|$ is the cardinality of a set M (if G is a group, then $|G|$ is called the order of G).
- $x \in M$ means that x is an element of M. $N \subseteq M$ means that N is a subset of M; if $N \neq M$, we write $N \subset M$.
- \emptyset is the empty set.
- N is called a nontrivial subset of M, if $N \neq \emptyset$ and $N \subseteq M$. If $N \subset M$, we say that N is a proper subset of M.
- $M \cap N$ is the intersection and $M \cup N$ is the union of sets M and N. If M, N are sets, then $N - M$ is the difference of N and M.
- \mathbb{C} is the set (field) of complex numbers.
- \mathbb{R} is the set (field) of real numbers.
- \mathbb{Q} is the set (field) of rational numbers.
- \mathbb{Z} is the set (ring) of integers: $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots \}$.
- \mathbb{N} is the set of natural numbers.

Number theory and general algebra

- p is always a prime number.
- m, n are always natural numbers.
- $\text{GCD}(m, n)$ is the greatest common divisor of m and n.
- $m \mid n$ should be read as follows: m divides n.
- $\pi(m)$ is the set of all prime divisors of m.
- π is a set of primes (it may be the empty set).
- π' is the set of primes not contained in π.
- m_{π} is the number satisfying the following three conditions: $\pi(m_{\pi}) \subset \pi$, $m_{\pi} \mid m$, $\pi(m/m_{\pi}) \subset \pi'$.
- We write m_p, p' instead of $m_{\{p\}}, \{p'\}$, respectively.
- m is a π-number if $\pi(m) \subseteq \pi$ (or $m_{\pi} = m$).
- $\mathbb{GF}(p^m)$ is the finite field containing p^m elements.
- \mathbb{F}^* is the multiplicative group of a field \mathbb{F}.
- \mathbb{F}^n is the n-dimensional vector space over \mathbb{F}.
- \mathbb{F}_n is the set of all $n \times n$ matrices over \mathbb{F}.
- If A is a square matrix, then det A and tr A are the determinant and the trace of A (that is, the sum of elements on its principal diagonal), respectively.
- I_n is the $n \times n$ identity matrix.
- \overline{a} is the number conjugate to $a \in \mathbb{C}$.
- $[x]$ is the integer part of $x \in \mathbb{R}$.

https://doi.org/10.1515/9783110224092-202
Groups

- G is always a finite group.
- $H \leq G$ means that H is a subgroup of G.
- $H < G$ means that $H \subseteq G$ and $H \neq G$ (in this case H is called a proper subgroup of G);
 \{1\} denotes the group of order 1; H is a nontrivial subgroup of G if $\{1\} < H < G$.
- H is a maximal subgroup of G if $H < G$ and $H \leq M < G$ imply that $H = M$.
- $H \trianglelefteq G$ means that H is a normal subgroup of G; moreover, if $H \neq G$, we write $H \lhd G$ and say that H is a proper normal subgroup of G. $H \lhd G$ is called a nontrivial normal subgroup of G if $|H| > 1$.
- H is a minimal normal subgroup of G if (a) $H \subseteq G$, (b) $H > \{1\}$, (c) $N \trianglelefteq G$ and $N < H$ imply $N = \{e\}$. Thus, $\{1\}$ has no minimal normal subgroups.
- G is simple if it is a minimal normal subgroup of G (in particular, $|G| > 1$).
- H is a maximal normal subgroup of G if G/H is simple.
- G is a monolith if $G = \{1\}$ or if G contains only one minimal normal subgroup.
- The subgroup generated by all minimal normal subgroups of G is called the socle of G and is denoted by $\text{Sc}(G)$. One can represent $\text{Sc}(G)$ as the direct product of certain minimal normal subgroups of G. We put $\text{Sc}(\{1\}) = \{1\}$. Obviously, $\text{Sc}(G)$ is a characteristic subgroup of G.
- $N_G(M) = \{x \in G \mid x^{-1}Mx = M\}$ is the normalizer of a subset M in G.
- $C_G(x)$ is the centralizer of an element x in G: $C_G(x) = \{z \in G \mid zx = xz\}$.
- $C_G(M) = \bigcap_{x \in M} C_G(x)$ is the centralizer of a subset M in G.
- $\text{Aut } G$ is the group of all automorphisms of G (the automorphism group of G).
- $\text{Inn } G$ is the group of all inner automorphisms of G.
- $\text{Out } G = \text{Aut } G/\text{Inn } G$.
- $[x, y] = x^{-1}y^{-1}xy$ is the commutator of elements x, y of G. If $M, N \subseteq G$, then $[M, N] = \langle [x, y] \mid x \in M, y \in N \rangle$. (However, we use $[M, N] = [[x, y] \mid x \in M, y \in N]$ in Chapter XI.)
- If $M \subseteq G$, then $\langle M \rangle$ is the subgroup of G generated by M.
- G' is the subgroup generated by all commutators $[x, y], x, y \in G$ (i.e., $G' = [G, G]$), $G'' = (G')'$, $G''' = (G'')'$ and so on.
- $Z(G) = \bigcap_{x \in G} C_G(x)$ is the center of G.
- $\Phi(G)$ is the Frattini subgroup of G (the intersection of all maximal subgroups of G).
- $F(G)$ is the Fitting subgroup of G (the maximal normal nilpotent subgroup of G).
- $S(G)$ is the solvable radical of G (the maximal solvable normal subgroup of G).
- $\exp G$ is the exponent of G (the least common multiple of the orders of the elements of G).
- $o(x)$ is the order of an element x of G.
- $k(G)$ is the number of conjugacy classes of G (i.e., $G = G$-classes), the class number of G.
- If $M \subseteq G$, then $k_G(M)$ is the number of G-classes containing elements of M.
- $\pi(G) = \pi(|G|)$.
O_π(G) is the maximal normal π-subgroup of G, O(G) = O_{2'}(G) (obviously, one has O_p(G) ∈ Syl_p(F(G))).
O^π(G) is the subgroup generated by all π'-elements of G.
C_m is the cyclic group of order m.
A × B is the direct product of groups A and B.
A * B is a central product of groups A and B.
G^0 = \{1\}; G^m is the direct product of m copies of G.
E_{p^m} = (C_p)^m is the elementary abelian group of order p^m.
A group G is said to be homocyclic if it is a direct product of isomorphic cyclic subgroups (obviously, elementary abelian p-groups are homocyclic).
ES(m, p) is an extraspecial group of order p^{1+2m} (a p-group G is said to be extraspecial if G' = Φ(G) = Z(G) is of order p).
A special p-group is a nonabelian p-group G such that G' = Φ(G) = Z(G) is elementary abelian.
(A, B) is a Frobenius group with kernel B and Frobenius complement A (A and B do not determine (A, B) up to isomorphism).
D_{2m} is the dihedral group of order 2m, m > 2.
Q_{2m} is the generalized quaternion group of order 2^m > 2, m > 3.
SD_{2m} is the semidihedral group of order 2^m ≥ 2^4.
cl G is the nilpotency class of a p-group G.
CL G is the set of all G-classes.
A p-group of maximal class is a nonabelian group G of order p^m with cl G = m - 1.
If G is a p-group, then Ω_m(G) = \langle x ∈ G | x^{p^m} = 1 \rangle, and m.G = \langle x^m | x ∈ G \rangle.
Syl(G) is the set of all Sylow subgroups of G.
Syl_p(G) is the set of all Sylow p-subgroups of G.
H is a Hall subgroup of G if (|H|, |G : H|) = 1.
H is a π-Hall subgroup of G if |H| = |G|_π.
S_π is the symmetric group of degree n.
A_π is the alternating group of degree n.
GL(n, F) is the set of all nonsingular n × n matrices with entries in a field F, the general linear group over F.
SL(n, F) = \{A ∈ GL(n, F) | det A = 1 ∈ F\}, the special linear group over F.
PGL(m, F) = GL(n, F)/Z(GL(n, F)).
PSL(n, F) = SL(n, F)/Z(SL(n, F)).
AGL(n, F) is the natural linear group of F^n by GL(n, F), the affine general linear group.
Sz(2^m) is the simple Suzuki group, m > 1 being odd.
For H < G, H_G = \bigcap_{x ∈ G} x^{-1}Hx is called the core of the subgroup H in G. Obviously, H_G ⊆ G.
An element x ∈ G is a π-element if π(ο(x)) ⊆ π.
G is a π-group if π(G) ⊆ π. Obviously, G is a π-group if and only if all its elements are π-elements.
O^π(G) = \langle x ∈ G | π(ο(x)) ⊆ π' \rangle.
O^n(G) = O^n(O^n(G)).

A group G is an extension of $N \subseteq G$ by a group H if $G/N = H$. A group G splits over N if $G = HN$ with $H < G$ and $H \cap N = 1$ (in that case, G is a semidirect product of H and N with kernel N).

A group G is p-solvable if all indices of its composition series are equal to p or are p'-numbers. A group G is π-solvable if it is p-solvable for all $p \in \pi$.

A group G is said to be π-separable if all indices of its composition series are π- or π'-numbers.

If $M \subseteq G$, $x \in G$, then $M^x = x^{-1}Mx = \{x^{-1}ax \mid a \in M\}$.

H is a TI-subgroup of G if $H \cap H^x = 1$ for all $x \in G - N_G(H)$; M is a TI-subset of G if $M \cap M^x \subseteq \{1\}$ for all $x \in G - N_G(M)$.

$H^\# = H - \{e_H\}$, where e_H is the identity element of the group H. If $M \subseteq G$, then $M^\# = M - \{e_G\}$.

A permutation σ of a set M is regular if $\sigma(x) \neq x$ for all $x \in M$. An automorphism a of G is regular (= fixed-point free) if it induces a regular permutation on $G^\#$.

If $x, y \in G$, then the expression “$x \sim y$ in G” means that x, y are conjugate in G. Similarly, “$M \sim N$ in G” means that the subsets M, N are conjugate in G.

An involution is an element of order 2 in a group.

An element $x \in G$ is real if $x \sim x^{-1}$ in G. An element x is rational if all generators of the subgroup $\langle x \rangle$ are conjugate in G. An involution is a real and rational element.

A section of a group G is an epimorphic image of some subgroup of G.

A group G is p-closed if $|\text{Syl}_p(G)| = 1$ (i.e., $O_p(G) \in \text{Syl}_p(G)$).

A group G is p-nilpotent if it has a normal p-complement, i.e., a normal subgroup H of order $|G|/p^r$.

An $S(p^a, q^b, q^c)$-group is a q-closed minimal non-nilpotent group G of order $p^a q^{b+c}$ with $|Z(G)| = p^{a-1} q^c$ (see Chapter XI).

If $F = GF(p^a)$, then we write $GL(m, p^a)$, etc., instead of $GL(m, F)$, etc.

If $M \subseteq G$, then M^G is the normal closure of M in G.

Characters and representations

- $F[G]$ is the set of all functions from G to \mathbb{C}.
- $CF[G]$ is the set of all central (= class) functions from G to \mathbb{C}.
- $\text{Char}(G)$ is the set of all complex characters of G. It is convenient to consider the zero function $O_{G \to \mathbb{C}}$ as an element of the set $\text{Char}(G)$.
- $\text{Irr}(G)$ is the set of all irreducible characters of G.
- A character of degree 1 is said to be linear.
- $\text{Lin}(G)$ is the set of all linear characters of G (obviously, $\text{Irr}(G) \subseteq \text{Irr}(G)$).
- $\text{Irr}_1(G) = \text{Irr}(G) - \text{Lin}(G)$ is the set of all nonlinear irreducible characters of G; $n(G) = |\text{Irr}_1(G)|$ is the number of nonlinear irreducible characters of G.

VIII Characters of Finite Groups 2
• A class function θ is said to be a generalized character of G if $\theta = \chi_1 - \chi_2$, where $\chi_1, \chi_2 \in \text{Char}(G)$.
• $\text{Ch}(G)$ is the set of all generalized characters of G.
• If $\theta, \lambda \in F[G], x \in G$, then $(\theta \lambda)(x) = \theta(x)\lambda(x)$.
• FG is the group algebra of G over the field F.
• $\chi(1)$ is the degree of a character χ of G; $\deg T$ is the degree of a representation T of G.
• If $\chi \in \text{Char}(G)$, $\phi \in \text{Char}(H)$, $H < G$, then χ_H is the restriction of χ to H, and ϕ^G is the induced character ($\phi^G \in \text{Char}(G)$).
• If $\vartheta, \psi \in \text{CF}[G]$, then $\langle \vartheta, \psi \rangle = |G|^{-1} \sum_{x \in G} \vartheta(x)\overline{\psi(x)}$ is the scalar (or inner) product of ϑ and ψ.
• If $H \leq G$, $\phi \in \text{Irr}(H)$, then $I_G(\phi) = \{ x \in G \mid \phi^x = \phi \}$ is the inertia group of ϕ in G (where $\phi^x(h) = \phi(xhx^{-1})$ for $h \in H$).
• If $H \leq G$ and $\phi \in \text{CF}[H]$, then ϕ is the function in $\text{CF}[G]$ that coincides with ϕ on H and vanishes on $G - H$.
• 1_G is the principal character of G ($1_G(x) = 1$ for all $x \in G$).
• ρ_G is the regular character of G.
• $\text{Irr}(\chi)$ is the set of all irreducible constituents of a character χ of G. Furthermore, $\text{Irr}_1(\chi) = \text{Irr}(\chi) \cap \text{Irr}_1(G)$. (The expression $\psi \in \text{Irr}(\chi)$ means that the character ψ is a constituent of χ.)
• $X(G)$ is the character table of G, and $X_1(G)$ is its first column (consisting of the degrees of irreducible characters, counting multiplicities).
• $M(G)$ is the Schur multiplier of G.
• If M is a set, the Kronecker symbol $\delta : M \times M \to \{0, 1\}$ is defined as follows: if $a = b$, then $\delta_{a,b} = 1$, and if $a \neq b$, then $\delta_{a,b} = 0$.
• $\text{cd} G = \{ \chi(1) \mid \chi \in \text{Irr}(G) \}$.
• $\text{cd}_1 G = \{ \chi(1) \mid \chi \in \text{Irr}_1(G) \} = \text{cd} G - \{ 1 \}$.
• $b(G) = \max \{ n \mid n \in \text{cd} G \}$.
• $\ker T$ is the kernel of a representation T.
• $\ker \chi$ is the kernel of a character χ.
• $Z(\chi) = \{ x \in G \mid |\chi(x)| = \chi(1) \}$ is the quasikernel of $\chi \in \text{Char}(G)$.
• $T_\chi = \{ x \in G \mid \chi(x) = 0 \}$ is the set of zeros of $\chi \in \text{Ch}(G)$.
• $U_\chi = \{ x \in G \mid |\chi(x)| = 1 \}$ is the set of χ-unitary elements of G (where $\chi \in \text{Ch}(G)$).
• Let $N \trianglelefteq G$. Then $\text{Irr}_N(G) = \{ \chi \in \text{Irr}(G) \mid N < \ker \chi \}$. We often identify the sets $\text{Irr}_N(G)$ and $\text{Irr}(G/N)$. Next, $\text{Irr}(G, N) = \text{Irr}(G) - \text{Irr}(G/N)$; $\text{Lin}_N(G) = \text{Lin}(G) \cap \text{Irr}_N(G)$.
• $\text{Irr}_\phi(G) = \{ \chi \in \text{Irr}(G) \mid \langle \chi_N, \phi \rangle > 0 \}$, where $N \trianglelefteq G$, $\phi \in \text{Irr}(N)$.
• Let $H < G$, $\phi \in \text{Irr}(H), \chi \in \text{Irr}(G)$. Then χ is an extension of ϕ to G if $\chi_H = \phi$.
• $\nu_2(\chi)$ is the Frobenius–Schur indicator of $\chi \in \text{Irr}(G)$ (see Chapter IV).
• $\text{mc}(G) = k[G]/|G|$ is the measure of commutativity of G.
• $T(G) = \sum_{\chi \in \text{Irr}(G)} \chi(1)$, and $f(G) = T(G)/|G|$.
• Let T be a representation, affording the character χ of G. Then the function $\text{det} \chi : G \to \mathbb{C}^*$ is defined by $\text{det}(\chi)(x) = \text{det} T(x), x \in G$. Obviously, $\text{det} \chi \in \text{Lin}(G)$.
- If $\chi \in \text{CF}(G)$, then $\overline{\chi} : G \to \mathbb{C}$ is defined by $\overline{\chi}(x) = \overline{\chi(x)}, x \in G$.
- If $X \subseteq \text{Irr}(G)$, then $X^* = X - 1_G$. In particular, $\text{Irr}^*(G)$ is the set of all nonprincipal characters of G. $\text{Irr}_1(G, p') = \{\chi \in \text{Irr}_1(G) \mid p \nmid \chi(1)\}$.
- $T_1(G, p') = \sum_{\chi \in \text{Irr}_1(G, p')} \chi(1)$.
- If $P \in \text{Syl}_p(G)$, then $T_1(G, P, p') = \sum_{\chi \in \text{Irr}_1(G, p')} \chi_{P} \chi(1)$.
- $\text{Kern } G = \{\ker \chi \mid \chi \in \text{Irr}_1(G)\}$.
- $v(x) = ||\chi(x) \mid x \in G||$.
- A character χ of G is monolithic if $\chi \in \text{Irr}(G)$ and $G/\ker \chi$ is a monolith. $\text{Irr}_m(G)$ is the set of all monolithic characters of G, $\text{Irr}_{1,m}(G) = \text{Irr}_m(G) \cap \text{Irr}_1(G)$.