Contents

Preface — V

1 Introduction into MHD turbulence — 1
 1.1 Turbulence around us — 1
 1.2 Kolmogorov scaling — 4
 1.3 Compressible MHD equations and simulated turbulence — 6
 1.4 How MHD cascade is different from hydro cascade? — 7
 1.5 Turbulent dynamo — 9
 1.6 Magnetohydrodynamics and reconnection — 9
 1.7 Observing MHD turbulence — 10
 1.8 Applications of MHD turbulent theory — 10
 1.9 Cosmic ray transport and acceleration — 11

2 Astrophysical dynamo — 13
 2.1 Nonlinear small-scale dynamo — 14
 2.1.1 Linear growth stage — 14
 2.1.2 Locality of the small-scale dynamo — 16
 2.1.3 Numerical results — 17
 2.1.4 Efficiency of nonlinear dynamo — 18
 2.1.5 Dynamo simulations with intermittent driving — 19
 2.2 Dynamo in galaxy clusters — 20
 2.2.1 Physical conditions in galaxy clusters — 20
 2.2.2 Limitation of dynamo simulations — 22
 2.2.3 Analysis of cluster simulations — 24
 2.2.4 Cluster magnetic fields — 26

3 Incompressible MHD turbulence — 29
 3.1 Equations of incompressible MHD and conservation laws — 31
 3.2 From weak to strong turbulence — 33
 3.3 Reduced MHD approximation — 35
 3.4 Strong turbulence: phenomenology — 36
 3.4.1 Dissipation scales — 37
 3.4.2 Anisotropy from phenomenological viewpoint — 37
 3.4.3 Modifications of GS95 — 39
 3.5 Anisotropy from Lagrangian viewpoint — 39
 3.6 Parallel spectrum: numerics — 41
 3.7 Parallel spectrum observations versus numerics — 43
 3.8 Statistical indicators of turbulence — 45
 3.9 The scaling convergence argument — 48
3.10 Numerical studies of the spectral slope — 50
3.11 Dynamic alignment models — 55
3.12 Anisotropy scaling study — 58
3.13 Summary of balanced driven MHD turbulence — 59
3.14 Turbulence driven by external current — 59
3.14.1 MHD equations with external current and conservation laws — 60
3.14.2 Linear and nonlinear stages — 61
3.14.3 Empirical findings — 64
3.14.4 Applications of current driven turbulence to astrophysical systems — 65

4 Imbalanced MHD turbulence — 67
4.1 Theoretical considerations — 69
4.1.3 Perez and Boldyrev (2009) model, [356] PB09 — 71
4.2 Empirical study in MHD simulations with stochastic driving — 72
4.2.1 Establishment of the stationary state — 75
4.2.2 Parallel structure function — 76
4.2.3 Spectra and anisotropies — 79
4.2.4 Comparison with models — 84
4.3 Empirical study in reduced MHD simulations with energy-controlled driving — 86
4.3.1 Nonlinear cascading and dissipation rate — 86
4.3.2 Imbalanced spectra — 87
4.3.3 Imbalanced anisotropies — 88

5 Compressibility in MHD turbulence — 91
5.1 Decomposition into fundamental modes — 91
5.2 Other ways of decomposition into fundamental modes — 95
5.3 Decomposition into solenoidal and potential modes — 97
5.4 Density scalings — 98
5.4.1 Theoretical considerations — 99
5.4.2 The code — 100
5.4.3 Results — 101
5.4.4 Implications — 102
5.5 Viscosity-dominated regime of MHD turbulence — 103
5.6 Applying results to collisionless fluids — 106
5.7 Toward understanding of relativistic turbulence — 106
5.7.1 Fully relativistic MHD turbulence — 109
5.7.2 Relativistic compressible turbulence: mode decomposition — 110
6 Intermittency of MHD turbulence — 117
6.1 General considerations — 117
6.2 She–Leveque model of intermittency — 118
6.3 Intermittency of incompressible turbulence — 118
6.4 Intermittency of compressible turbulence — 119
6.5 Intermittency of viscosity-damped turbulence — 121

7 Turbulence and charged particles — 123
7.1 Particle diffusion due to stochastic fields — 124
7.1.1 Richardson’s picture of diffusion — 124
7.1.2 Field line diffusion — 125
7.1.3 Limiting cases: very small and very large distances — 126
7.1.4 Intertial range distances – hand-waving derivation — 126
7.1.5 Intertial range distances – Richardson–Alfvén diffusion — 127
7.1.6 Numerical results, asymmetric diffusion — 127
7.1.7 The model of asymmetric diffusion — 130
7.1.8 Implications of asymmetric field line wandering for particle transport — 130
7.2 Turbulence and particle acceleration — 131
7.2.1 Observational evidence for acceleration different from classic DSA — 131
7.2.2 Statistics of general MHD flows and energy transfer — 134
7.2.3 Acceleration by curvature drift — 135
7.2.4 Numerical case study of two types of turbulence — 137
7.2.5 Expected picture for turbulent acceleration in reconnection — 138

8 Reconnection in the presence of MHD turbulence — 141
8.1 The problem of reconnection — 141
8.1.1 Flux freezing and magnetic topology changes — 141
8.1.2 Sweet–Parker model and its generalization to turbulent media — 141
8.1.3 Temporal and spatial Richardson diffusion — 145
8.1.4 Turbulent reconnection and violation of magnetic flux freezing — 145
8.1.5 Turbulent reconnection in compressible media — 145
8.1.6 Turbulent reconnection in partially ionized gas — 146
8.2 Testing turbulent reconnection — 149
8.3 Understanding turbulent relativistic reconnection — 152
8.4 Generation of turbulence by reconnection — 156
8.4.1 Early-time turbulence in the planar current layer — 157
8.4.2 Compressible simulations with inflow and outflow of turbulence in the current layer — 159
8.5 Observational testing of turbulent reconnection — 161
8.5.1 Solar turbulent reconnection — 161
8.5.2 Solar wind, Parker spiral, heliospheric current sheet — 162
8.5.3 Indirect observational evidence — 163
8.5.4 Flares of magnetic reconnection and associated processes — 164
8.6 Comparison of approaches to magnetic reconnection — 165
8.6.1 Turbulent reconnection and numerical simulations — 165
8.6.2 Turbulent reconnection versus tearing reconnection — 166
8.6.3 Turbulent reconnection: 3D reality versus 2D models — 167
8.6.4 Turbulent reconnection versus turbulent resistivity — 168

9 Turbulent transport of magnetic field and heat — 171
9.1 Important motivation: star formation problem — 171
9.2 Diffusion in magnetized turbulent fluid — 173
9.2.1 Physical picture of reconnection diffusion in the absence of gravity — 176
9.2.2 Reconnection diffusion in the presence of gravity — 179
9.3 Reconnection diffusion and the identity of magnetic field lines — 180
9.3.1 Explosive diffusion of magnetic field lines in turbulent flows — 180
9.3.2 Spontaneous stochasticity of magnetic field lines and reconnection diffusion — 183
9.3.3 Reconnection diffusion in partially ionized gas — 184
9.4 Theoretical expectations and numerical simulations of reconnection diffusion — 185
9.4.1 Limitations of numerical simulations — 185
9.4.2 Reconnection diffusion in circumstellar accretion disks — 187
9.5 Predictions and tests for reconnection diffusion — 188
9.5.1 Reconnection diffusion in interstellar diffuse gas — 188
9.5.2 Reconnection diffusion and extreme cases of star formation — 190
9.5.3 Intuitive understanding of reconnection diffusion — 191
9.5.4 Reconnection diffusion and alternative ideas — 192
9.5.5 Transport of heat in magnetized fluid — 194
9.5.6 MHD and plasma-based descriptions of reconnection diffusion — 199

10 Extracting properties of astrophysical turbulence from observations — 203
10.1 Studying turbulence with spectral lines — 204
10.1.1 Statistics of the PPV: velocity channel analysis and velocity coordinate spectrum — 205
10.2 Synchrotron fluctuations — 219
10.2.1 Numerical testing of the synchrotron-based techniques and the application to observations — 225
10.3 Observational signatures of MHD turbulence modes — 226
10.3.1 Anisotropy arising from Alfvénic turbulence: obtaining magnetic field direction and M_A — 226

10.3.2 Contribution of different MHD turbulence modes — 227

10.4 Relation to CMB foreground studies — 228

10.4.1 Polarized CMB foreground — 228

10.4.2 MHD turbulence for foreground studies — 229

10.5 Gradient technique: utilizing the turbulence knowledge to study magnetic fields — 235

10.5.1 Velocity gradients — 235

10.5.2 Synchrotron intensity gradients — 239

10.5.3 Synchrotron polarization gradients — 240

10.5.4 Intensity gradients — 241

10.5.5 Dispersion of gradient directions: obtaining magnetization of the media — 243

10.5.6 Probing magnetic fields with different types of gradients — 244

10.6 Synergy of different approaches — 245

Bibliography — 247

Index — 269