Contents

Jeffrey D. Achter and Rachel Pries

Generic Newton polygons for curves of given p-rank 1

1 Introduction 1

2 Structures in positive characteristic 3

2.1 The p-rank 3

2.2 Newton polygons 4

2.3 Semicontinuity and purity 7

2.4 Notation on stratifications and Newton polygons 8

3 Stratifications on the moduli space of Abelian varieties 9

3.1 The p-ranks of Abelian varieties 9

3.2 Newton polygons of Abelian varieties 10

4 The p-rank stratification of the moduli space of stable curves 11

4.1 The moduli space of stable curves 11

4.2 The p-rank stratification of \mathcal{M}_g 12

4.3 Connectedness of p-rank strata 13

4.4 Open questions about the p-rank stratification 13

5 Stratification by Newton polygon 14

5.1 Newton polygons of curves of small genus 14

5.2 Generic Newton polygons 15

6 Hyperelliptic curves 16

7 Some conjectures about Newton polygons of curves 18

7.1 Nonexistence philosophy 19

7.2 Supersingular curves 20

7.3 Other nonexistence results 20

Alp Bassa, Peter Beelen, and Nhut Nguyen

Good towers of function fields 23

1 Introduction 23

2 The Drinfeld modular towers $(X_0(P^n))_{n\geq 0}$ 25

3 An example of a classical modular tower 32

4 A tower obtained from Drinfeld modules over a different ring 33

4.1 Explicit Drinfeld modules of rank 2 33

4.2 Finding an isogeny 36

4.3 Obtaining a tower 38
Claude Carlet and Sylvain Guilley

Correlation-immune Boolean functions for easing countermeasures to side-channel attacks — 41

1 Introduction — 42
2 Preliminaries — 45
2.1 The combiner model of pseudo-random generator in a stream cipher and correlation-immune functions — 45
2.2 Side-channel attacks — 49
2.3 Masking counter measure — 51
3 Methods for allowing masking to resist higher order side-channel attacks — 53
3.1 Leakage squeezing for first-order masking — 53
3.2 Leakage squeezing for second-order masking — 55
3.3 Rotating S-box masking — 56
4 New challenges for correlation-immune Boolean functions — 58
4.1 Basic facts on CI functions, orthogonal arrays and dual distance of codes — 58
4.2 Known constructions of correlation-immune functions — 61
4.3 Synthesis of minimal weights of d-CI Boolean functions — 65

Jung Hee Cheon, Taechan Kim, and Yongsoo Song

The discrete logarithm problem with auxiliary inputs — 71

1 Introduction — 72
2 Algorithms for the ordinary DLP — 73
2.1 Generic algorithms — 73
2.2 Nongeneric algorithms — 76
3 The DLPwAI and Cheon’s algorithm — 78
3.1 $p − 1$ cases — 79
3.2 Generalized algorithms — 80
4 Polynomials with small value sets — 82
4.1 Fast multipoint evaluation in a blackbox manner — 82
4.2 An approach using polynomials of small value sets — 83
5 Approach using the rational polynomials: Embedding to elliptic curves — 84
6 Generalized DLPwAI — 85
6.1 Representation of a multiplicative subgroup of $\mathbb{Z}_{p−1}^\times$ — 85
6.2 A group action on \mathbb{Z}_p^\times and polynomial construction — 86
6.3 Main result — 86
7 Applications and implications — 87
7.1 Strong Diffie–Hellman problem and its variants — 87
7.2 Attack on the existing schemes using Cheon’s algorithm — 88
8 Open problems and further work — 89
Massimo Giulietti and Gábor Korchmáros

Garden of curves with many automorphisms — 93

1. Introduction — 93
2. Notation and background — 94
3. Upper bounds on the size of G depending on g — 95
4. Upper bounds on the size of the p-subgroups of G depending on the p-rank — 96
5. Examples of curves with large automorphism groups — 97
 5.1. Curves with unitary automorphism group — 97
 5.2. Curves with Suzuki automorphism group — 98
 5.3. Curves with Ree automorphism group — 99
 5.4. The Giulietti–Korchmáros curve — 99
 5.5. The generalized GK curve — 100
 5.6. A curve admitting $SU(3, p)$ as an automorphism group — 101
 5.7. General hyperelliptic curves with a K-automorphism 2-group of order $2g + 2$ — 101
 5.8. A curve with genus $g = (2^h - 1)^2$ admitting a K-automorphism 2-group of order of order $2(g - 1) + 2^{h+1} - 2$ — 101
 5.9. General bielliptic curves with a dihedral K-automorphism 2-group of order $4(g - 1)$ — 102
 5.10. A curve of genus g with a semidihedral K-automorphism 2-group of order $2(g - 1)$ — 104
6. Characterizations — 105
 6.1. Curves with many automorphisms with respect to their genus — 105
 6.2. Curves with a large nontame automorphism group — 106
 6.3. Theorem 6.2 and some generalizations of Deligne–Lusztig curves — 107
 6.4. Group-theoretic characterizations — 109
7. The possibilities for G when the p-rank is 0 — 110
8. Large automorphism p-groups in positive p-rank — 112
 8.1. $p = 2$ — 112
 8.2. $p = 3$ — 116
 8.3. $p > 3$ — 117

Tor Helleseth

Nonlinear shift registers – A survey and challenges — 121

1. Introduction — 121
2. Nonlinear shift registers — 123
 2.1. The binary de Bruijn graph — 124
 2.2. The pure cycling register — 126
 2.3. The complementary cycling register — 126
 2.4. De Bruijn sequences — 126
<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Mykkeltveit’s proof of Golomb’s conjecture</td>
</tr>
<tr>
<td>4</td>
<td>The D-morphism</td>
</tr>
<tr>
<td>5</td>
<td>Conjugate pairs in PCR</td>
</tr>
<tr>
<td>6</td>
<td>Finite fields and conjugate pairs</td>
</tr>
<tr>
<td>6.1</td>
<td>Cycle joining and cyclotomy</td>
</tr>
<tr>
<td>7</td>
<td>Periodic structure of NLFSRs</td>
</tr>
<tr>
<td>8</td>
<td>Conclusions</td>
</tr>
<tr>
<td></td>
<td>Florian Pausinger and Alev Topuzoğlu</td>
</tr>
<tr>
<td></td>
<td>Permutations of finite fields and uniform distribution modulo 1</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Preliminaries</td>
</tr>
<tr>
<td>3</td>
<td>Good and weak families of permutations</td>
</tr>
<tr>
<td>4</td>
<td>Existence of good families</td>
</tr>
<tr>
<td>5</td>
<td>Permutation polynomials of Carlitz rank 3</td>
</tr>
<tr>
<td>6</td>
<td>Bounds for $f(S_p^*)$</td>
</tr>
<tr>
<td>7</td>
<td>Computational results</td>
</tr>
<tr>
<td>8</td>
<td>Concluding remarks</td>
</tr>
<tr>
<td></td>
<td>Alexander Pott, Kai-Uwe Schmidt, and Yue Zhou</td>
</tr>
<tr>
<td></td>
<td>Semifields, relative difference sets, and bent functions</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Semifields</td>
</tr>
<tr>
<td>3</td>
<td>Relative difference sets</td>
</tr>
<tr>
<td>4</td>
<td>Relative difference sets and semifields</td>
</tr>
<tr>
<td>5</td>
<td>Planar functions in odd characteristic</td>
</tr>
<tr>
<td>6</td>
<td>Planar functions in characteristic 2</td>
</tr>
<tr>
<td>7</td>
<td>Component functions of planar functions</td>
</tr>
<tr>
<td>8</td>
<td>Concluding remarks and open problems</td>
</tr>
<tr>
<td></td>
<td>Ron Steinfeld</td>
</tr>
<tr>
<td></td>
<td>NTRU cryptosystem: Recent developments and emerging mathematical problems in finite polynomial rings</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Notation and preliminaries</td>
</tr>
<tr>
<td>2.1</td>
<td>Notation</td>
</tr>
<tr>
<td>2.2</td>
<td>Probability and algorithms</td>
</tr>
<tr>
<td>2.3</td>
<td>Rings</td>
</tr>
<tr>
<td>2.4</td>
<td>Lattices</td>
</tr>
</tbody>
</table>