Chapter Four

SELF-CONTRADICTION

In the context of these deliberations the talk of self-contradiction is in one way somewhat loose and figurative. For the “self” at issue need not be an individual but could be a group or even an impersonal theory or system.

For example consider the following three propositions to which various philosophers have been inclined to subscribe:

(1) All human acts are causally determined.

(2) Men can and do make free acts of choice.

(3) A genuinely free act cannot be causally determined (for if it is so determined then the act is not free by virtue of this very fact).

These three theses represent an inconsistent triad in which consistency can be restored by any one of three distinct approaches, depending on which theses we are prepared to drop:

Deny (1): “Voluntarism”—the exemption of free acts of the will from causal determination (Descartes).

Deny (2): “Determinism” of the will by causal constraints (Spinoza).

Deny (3): “Compatibilism” of free action and causal determination—for example, via a theory that distinguishes between inner and outer causal determination and sees the former sort of determination as compatible with freedom (Leibniz).
1. There are always alternatives in matters of consistency restoration.

For as such examples show, any particular way out of an inconsistent cluster is bound to be simply one way among others. The single most crucial fact here is that there will always be a variety of distinct ways of averting the inconsistency at issue.

For in general if we drop our allegiance to sufficiently many of the contentions of an inconsistent cluster. And this situation is pervasive in philosophy, where all too often inconsistencies arise because the plausible contentions regarding virtually any of the complex matters at issue come into conflict. For example, the theory of knowledge of the ancient Greeks revolved about the following quartet of collectively incompatible contentions:

(1) We do have some knowledge about the world.

(2) Whatever knowledge we have about the world must come via the senses (i.e., ultimately roots in what the senses deliver).

(3) There is no genuine knowledge (episteme) without certainty.

(4) The senses do not yield certainty.

A positive inclination toward these theses—a tendency to see them each as plausible and seemingly acceptable—sets the stage for philosophical controversy. For a (limited) variety of exits from the inconsistency is available:

Deny (1): Maintain that we cannot have authentic knowledge about the world (Pyrrhonian or Extreme Sceptics).

Deny (2): Maintain that genuine knowledge about the world can come from reason alone (Pythagoreans, Plato).

Deny (3): Maintain that adequate knowledge need not be based on the certain but can be based on the plausible—to pithanon (Academic or Moderate Sceptics).
Deny (4): Maintain that the senses do yield certainty in some cases—those that result in the so-called “cataleptic” perceptions (Stoics).

Confronted with that inconsistent cluster, one must make up one’s mind among between these alternatives, and different schools of thought take different positions here.

2. In purely theoretical disciplines—preeminently pure mathematics and formal logic—contradiction is seen as an absolute and all-destructive catastrophe and accordingly self-consistency becomes an indispensible requisite. For these disciplines insist upon closure under deduction and in taking a classical view of deductively—according to which any proposition whatsoever follows from a contradiction—make this condition into an all-destructive superbomb. The rigorous exclusion of contradictions has accordingly been seen as essential to the very life and being of such theoretical disciplines, with contradiction viewed as a disaster that must be excluded at all costs.

3. By contrast, non-classically inclined theorists—and, above all, theorists of knowledge who are prepared to take a less rigoristic approach—have taken a more relaxed view of contradictions. As they see it, contradictions need not be seen as disaster absolute but as mere anomalies within a coherent wider field of meaning. Contradiction, so regarded, is not a catastrophe but a mere annoyance.

In many real-life contexts we take inconsistency in ready stride. One seemingly reliable witness reports the thief to be “A black-haired white male in mid-forties.” A second witness offers “A dark-brown-haired white male in his mid-thirties.” Clearly, we here would not react to the contradiction by abandoning those claims altogether. Instead we compromise and blend, arriving at “A dark-haired white male around 40 years of age.” By shifting and imprecise reformulations we correlate our sources of information in a way that compromises those contradictions. We certainly do not follow the traditionalistic logician into his instance that insistence of now anything goes.
4. To motivate a more relaxed approach it is instructive to consider some of the main ways in which contradiction can manifest itself. These would include:

4a. **Blatant self-contradiction.** It is unusual to find a flat-out contradiction in a single sentence. Perhaps someone’s dating an event on 30 February 1903 would be an example, given the fact that February cannot possibly have more than 29 days. Then too an outright *contradictio in adjecto* might serve as an example, as when one would refer to a *simple conundrum* or a *level mountain-range*.

4b. **Overt self-contradiction**, as when an historian gives one date for an event on page 5 and another on page 136. Novelists are especially given to this sort of self-contradiction, as when they characterize their villain as deft in one passage as awkward in another.

4c. **Covert self-contradiction.** This occurs when information is so presented that an elaborate cause of convoluted reasoning is required to bring out the contradiction at issue. (Section 6 below will offer an example.)

5. How can self-contradiction be “fixed” and consistency restored? Only a few alternatives are available here:

5a. **Theses abandonment.** One of the theses that plays an essential role in creating the contradiction can be given up with some sort of ground for doing so provided. Perhaps it is less well-attested than the others, or perhaps it is less inherently plausible.

5b. **Theses qualification.** One of the theses that plays an essential role in the contradiction can be subject to a serving qualification. Perhaps this theses *p* should be replaced by usually-*p* or generally-*p* or the like. Closely akin to this is—
5c. *Range restriction.* The theses involved in the contradiction can be range-restricted with some obtaining in \(A\)-type cases and others in duly distinguishable \(B\)-type cases, so that a collision can be averted. Thus instead of maintaining both \(p\) and \(\neg p\) one could maintain that the one obtains in one family of cases and the other in another, where the relevant family-defining conditions cannot be concurrently realized.

5d. *Compromise.* Confronted with contradictory statements, one plausible tactic is to search for the compromise afforded by a compromise proposition that “splits the difference” among those combinatorial claims. Specifically when \(p\) and \(q\) are incompatible this would mean searching for a proposition such that

\[
\begin{align*}
& \cdot p \rightarrow r \\
& \cdot q \rightarrow r \\
& \cdot (\forall s) ([p \rightarrow s \& q \rightarrow s] \rightarrow [r \rightarrow s])
\end{align*}
\]

Thus let

\[p = \text{“there were 8,000 people in the crowd”}\]

\[q = \text{“There were 12,000 people in the crowd”}\]

And now consider

\[s = \text{“there were roughly 10,000 people in the crowd,” here understanding *roughly* to mean “within 20 percent”}\]

Note that now the three mini-defining requirements are indeed satisfied via this \(s\). For example consider the obvious common consequence:

\[t = \text{“There were not less than 8,000 people in the crowd.”}\]
And now note that while both \(p \) and \(q \) entail \(t \), so does \(s \). And, clearly, my other common consequence will be in the same boat.

So there exists a contradiction-repair kit of processes by which outright self-contradiction can in principle be eliminated. However, none of these procedures is entirely cost-free. In each case something that one was initially minded to maintain has to be sacrificed in the interests of consistency restoration.

6. Once it is acknowledges that contradiction can be “fixed” and overcome in various ways, it becomes clear that contradictions are not created equal. Self-contradictions can now be seen as a matter of degree and extent: Not all have the same degree of seriousness and gravity.

7. Contradictions can differ in these matters of extent or degree, of severity in several ways—three in particular:

- manifestation obscurity/obviousness
- removal costliness/ease
- occurrence rarity/frequency

Let us briefly examine these in turn.

(1) *Manifestation obscurity* stands correlative with “computational complexity.” This is a matter of how much sophisticated reasoning is needed to bring the contradiction to view. Thus consider the following illustration.

On a train operated by three men, Jones, Smith, and Robinson, as engineer, brakeman, and fireman (but not necessarily respectively), are three passengers: Mr. Jones, Mr. Smith, and Mr. Robinson. The following information is given:
(a) Mr. Robinson lives in Detroit.

(b) Mr. Jones receives a salary of $4,000 a year.

(c) Smith beat the fireman at billiards.

(d) The passenger whose name is the same as the brakeman’s lives in Chicago.

(e) The brakeman lives halfway between Chicago and Detroit.

(f) The brakeman’s nearest neighbor, one of the passengers, earns a salary exactly three times as large as the brakeman’s.

(g) The engineer is older than Smith.

The question now is: “Who is the Engineer?” However, the given information is in fact inconsistent and self-contradictory. And yet this fact is far from obvious, and can only be extricated by a careful process of logical analysis. (For details see the Appendix.)

(2) Removal costliness inheres in the process of eliminating contradictions by abandoning some of the contentions by which they are generated. There will, of course, always be various ways of accomplishing this. Thus consider the following four claims:

• Every person has some weight or other.

• The weight of a person is given by a particular mathematically measures quantity.

• Every particular mathematical quantity is accurate to 10 decimal places.

• The weight of a person is accurate to 10 decimal places.
• Human weight cannot be projected with great accuracy.

As ever, contradiction can be overcome by abandoning one or more of the contradicting-engendering thesis. But of course they differ in point of tenability/plausibility.

In the present instance the best policy would probably be to abandon that third theses, and distinguish between *abstract* mathematical quantities which must always be exactly detailed, questionable measurements which can be roughly and approximate.

In such cases we would want to resolve consistency in the least problematic, the most plausible way. And a grounding of contradiction in terms of removal costliness would use as its standard the minimum contention of the (least) costliness of the least costly way of eliminating the contradiction.

(3) *Occurrence prominence* is a matter of the manifestation frequency of contradiction—i.e., the comparative magnitude of the range of cases where contradiction will arise. Thus consider the following situation:

Let it be that we are informed that throughout region A, p holds and throughout region B, not-p holds. And let it be that their intersection $A \cap B$ is non-vacuous. The comparative extent of this overlap region is yet another way of assessing degrees of self-contradiction. If this region is comparatively minimal—that is if the ratio of the area of $A \cap B$ both to A and to B is minuscule—then that inconsistency, albeit real, is nevertheless very minor and virtually negligible.

8. Tolerating Inconsistency

When a contradiction is obscure in manifestation, costly in removal, and unprominent in occurrence, then it just may not be worth bother-
ing about. In such circumstances we may want to tolerate the inconsistency—at least until further notice.

One classic illustration of inconsistency tolerance is represented by the perplex known as the Preface Paradox. This arises when some author of some work apologizes in the preface for the errors that have crept into his work. But it is clear that he cannot with logical consistency maintain in the text that P_1, P_2, \ldots, P_u obtain and on the other hand concede that some P_i are false. In making the fallibilistic—but all too correct—concession that some of our claims are false we immediately plunge into inconsistency.

All the same, there can be little doubt that self-inconsistency is an unhappy and decidedly negative situation. Consistency is certainly more than “a hobgoblin of little minds.” But nevertheless there will be circumstances where the most of consistency-restriction is so high that it simply isn’t worth it. And from an epistemological point of view we can treat certain cases of inconsistency as simply another aspect of the risk of error that prevails throughout the realm of rational inquiry.

Appendix

To exhibit the inconsistency at issue consider the following reasoning, where we shall use the abbreviations:

\[
R = \text{Robinson} \quad e = \text{the engineer}
\]
\[
J = \text{Jones} \quad b = \text{the brakeman}
\]
\[
S = \text{Smith} \quad f = \text{the fireman}
\]

We can reason as follows (using \neq to mean “is not the same as”):

<table>
<thead>
<tr>
<th>FACT</th>
<th>REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1) \ S \neq f$</td>
<td>$(c) \ *$</td>
</tr>
</tbody>
</table>
(2) Mr. R is not b’s neighbor (a), (e)

(3) Mr. J is not b’s neighbor (b), (f)

(4) Mr. S is b’s neighbor (2), (3), (f)

(5) Mr. S doesn’t live in Chicago (e), (4)

(6) Mr. R doesn’t live in Chicago (a)

(7) Mr. J does live in Chicago (5), (6), (d)

(8) J = b (7), (d)

(9) J ≠ f (8)

(10) R = f (1), (9)

(11) S = e (8), (10)

(12) S ≠ e (g)

The given information is clearly not self-consistent. And yet it’s being so is far from obvious and requires some ingenuity to bring its recognition.