Contents

Carlo Rovelli
The most beautiful physical theory —— 1

Andrew C. Fabian and Anthony N. Lasenby
Astrophysical black holes —— 7

1 Introduction —— 7
2 A brief history of astrophysical black holes —— 8
2.1 Early history —— 8
2.2 The Schwarzschild metric —— 9
3 Relativistic astrophysics emerges —— 11
3.1 Rotating black holes —— 13
3.2 Black holes as energy sources —— 13
3.3 Motion in the Schwarzschild metric —— 14
3.4 Circular orbits —— 16
3.5 Stability of circular orbits —— 17
4 Evidence from X-rays, quasars and AGN —— 20
5 The black hole at the centre of the Milky Way —— 23
5.1 Sgr A* —— 23
5.2 GR effects on orbits —— 25
6 Galaxies and black holes —— 29
6.1 AGN feedback —— 29
6.2 Jets, Gamma-Ray Bursts and the birth of black holes —— 32
7 Current observations of accreting black holes —— 33
7.1 Particle motion in the Kerr metric —— 34
7.2 Current observations of accreting black holes continued —— 37
7.3 Velocities and frequencies —— 39
7.4 Further AGN properties —— 40
8 Measurements of the masses of black holes —— 41
9 Measurements of black hole spin —— 42
9.1 Equations for photon motion and redshift —— 43
9.2 Light bending around a Kerr black hole —— 46
9.3 Iron line emission —— 46
10 Future observations of astrophysical black holes —— 49
11 More general spherically symmetric black holes —— 52
12 Primordial black holes —— 54
12.1 Hawking radiation —— 54
12.2 Link with surface gravity —— 55
12.3 Astrophysical aspects of black hole evaporation —— 56
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4 Black hole entropy</td>
<td>57</td>
</tr>
<tr>
<td>12.5 Laws of black hole thermodynamics and the Penrose process</td>
<td>58</td>
</tr>
<tr>
<td>12.6 Adiabatic (reversible) changes</td>
<td>60</td>
</tr>
<tr>
<td>12.7 Other processes for extracting energy from a spinning black hole</td>
<td>60</td>
</tr>
<tr>
<td>13 Conclusions</td>
<td>62</td>
</tr>
</tbody>
</table>

Gene G. Byrd, Arthur Chernin, Pekka Teerikorpi, and Mauri Valtonen

Observations of General Relativity at strong and weak limits — 67

1 Introduction — 67
2 Tests in the solar system and binary systems — 69
 2.1 Orbit precession — 69
 2.2 Gravitational waves — 70
 2.3 Lense–Thirring effect and relativistic spin-orbit coupling — 71
 2.4 Bending of light rays and gravitational redshift — 71
 2.5 Massive spinning black hole test — 72
3 Observational discovery of a non-zero cosmological constant (dark energy) — 73
4 Weak limit test near zero gravity surface — 74
 4.1 Dark energy antigravity as a test of General Relativity — 74
 4.2 Local dark energy test via outflow — 74
 4.3 Dynamical structure of a gravitating system within dark energy — 77
5 Estimating cosmologically nearby dark energy: the Local Group — 79
6 Mass, dark energy density and the lost gravity effect — 81
7 Dark energy in the Coma Cluster of galaxies — 82
8 Testing the constancy of Λ — 82
9 Strong limit: Spinning black holes and no-hair theorem — 85
10 OJ287 binary system — 87
 10.1 The binary model — 87
 10.2 OJ287 flares and jet — 88
 10.3 OJ287 orbit parameters (without using outburst times) — 92
11 Modeling binaries with Post Newtonian methods (with outburst times) — 94
12 OJ287 results at the strong field limit — 94
13 Conclusions — 95
14 Appended section; mass, dark energy density and the “lost gravity” effect — 97
15 Appended section: dark energy in the Coma cluster of galaxies — 101
 15.1 Three mass estimates of the cluster — 101
 15.2 Matter mass profile — 102
 15.3 Upper limits and beyond — 104
16 Appended section: modeling binaries with Post Newtonian methods — 105
Ignazio Ciufolini

General Relativity and dragging of inertial frames —— 125
1 Frame-dragging: the theory —— 126
1.1 Dragging of inertial frames and the origin of inertia —— 126
1.2 Dragging of inertial frames and the gravitomagnetic analogy —— 127
1.3 The gravitomagnetic formal analogy of General Relativity with electrodynamics —— 128
1.4 Dragging of inertial frames inside a hollow sphere —— 131
1.5 Frame-dragging phenomena on clocks and photons —— 132
1.6 Frame-dragging, time-delay and gravitational lensing —— 134
1.7 [An invariant characterisation of frame-dragging] —— 138
2 The need to further test General Relativity —— 140
2.1 The universe and the triumph General Relativity —— 140
2.2 The riddle of dark energy and dark matter —— 141
2.3 Unified theories, alternative gravitational theories and some limits of General Relativity —— 141
2.4 [Frame-dragging, Chern–Simons gravity and String theory] —— 142
3 The holy grail of experimental General Relativity and its observation with the LAGEOS satellites and Gravity Probe-B —— 145
4 The LARES space experiment —— 151
4.1 The LARES satellite, its structure and its orbit —— 151
4.2 The LARES satellite, General Relativity and geodesic motion —— 153
4.3 The LARES satellite and its preliminary orbital results —— 154
4.4 [LARES error analyses] —— 155
5 Conclusions —— 158

Neil Ashby

GNSS and other applications of General Relativity —— 165
1 Introduction —— 165
2 Relativity principles —— 169
3 Astronomical and geocentric time scales —— 170
4 Earth-based time scales TT, TAI, UTC —— 174
5 Gravitational frequency shifts —— 176
6 Sagnac effect; realizing coordinate time —— 178
7 Relativistic effects on orbiting clocks —— 180
8 The eccentricity effect —— 183
9 Navigation on the rotating earth —— 183
10 Emission coordinates —— 186
11 JUNO and other missions —— 187
12 Summary —— 187
Carlo Rovelli

The strange world of quantum spacetime —— 189
1 A world with no space —— 189
2 A world without time —— 191
3 Loop gravity —— 194
4 Quantum spacetime —— 198
5 Empirical evidence —— 198

Index —— 203

List of contributors —— 209