
José Haro Peralta and Peter Verkinderen¹

“Find for Me!”: Building a Context-Based
Search Tool Using Python

The last decade has seen the beginning of what could become a methodological
revolution in the fields of Arabic and Islamic Studies with the appearance of
large collections of digitized classical Arabic texts.² The aim of this chapter is
to show that open-source tools can be developed by researchers to utilize the ex-
isting collections of digital texts more comprehensively.We will focus on the pos-
sibilities that easy-to-learn but powerful programming languages like Python
offer for advanced search operations. The authors of this chapter use Python
for historical research with early Islamic texts and have built an open-source tex-
tual analysis toolkit, released under the name Jedli. In the second part of this
chapter, we will present the basic building blocks of the Jedli program, with spe-
cial focus on its context search function. We hope the ideas presented in this
chapter can serve as an inspiration for other researchers to build more complex
tools for textual analysis.

Jedli was developed within the framework of the research project “The Early
Islamic Empire at Work: The View From the Regions Toward the Center,” which is
based at the University of Hamburg and funded by the European Research Coun-
cil. This project aims at providing a better understanding of the political and eco-
nomic structures of the Islamic Empire during its first three centuries by looking
at the working mechanisms of five key regions (Fārs, Ifrīqiya, al-Jazīra, Khurā-
sān, and al-Shām).³ Although the study of material culture (exemplified in
coins and archaeological remains) forms an important part of the project, its

 ERC project, “The Early Islamic Empire at Work—The View from the Regions toward the
Center,” University of Hamburg. The research leading to these results has been possible thanks
to funding from the European Research Council under the ERC Advanced Grant no. .We
express our gratitude to all members of the project for providing useful feedback during the
development of the Jedli toolkit as well as to the participants in the “Textual Corpora and the
Digital Islamic Humanities” workshop at Brown University (October –), who made
important suggestions and remarks on a preliminary version of this article. Special thanks go to
our colleague Hannah-Lena Hagemann, whose comments and criticism contributed notably to
improve the arguments developed in this article.
 By ‘digitized texts’ we do not mean scanned PDFs of text editions, but texts which have been
produced directly in a digital format, normally using a double-keying method (i.e., two typists
type the same text independently, and the two texts are then compared to filter out typos).
 See the project website: http://www.islamic-empire.uni-hamburg.de/.

main component is the analysis of textual primary source material, which is
combed for information on the administration, economy, and elites of the key
regions. The relevant text corpus consists of a large number of ‘literary’ (in the
sense of non-documentary) texts that were written between the eighth and the
thirteenth centuries CE and belong to different genres (historiography, geogra-
phy, law, prosopography, and others).

The sheer magnitude of the corpus, the large scope of the research ques-
tions, and the limited research time available call for a strategy to retrieve infor-
mation from the texts faster and in a more targeted way than is usually possible
with traditional means of textual research, such as browsing through the indexes
of edited works. This strategy makes use of the opportunities offered by digitized
texts.

Collections of digitized Arabic texts began to appear in the 1990s, starting
with digitized Qurans and ḥadīth works. The first of these collections appeared
on CD-ROMs, but the most important ones are now available online.⁴ The largest
and most developed collection is currently al-Maktaba al-Shamela (http://
www.shamela.ws), which has been online since 2005.⁵ This digital library con-
tains more than 6,500 books, divided into 76 categories. Not only does al-Makta-
ba al-Shamela have the largest collection of books, it also has an online platform
(http://www.islamport.com), which allows a basic search across all the books
within a specific category, and a dedicated desktop program, developed to
read and search the collection. The desktop program offers an advanced search
engine, which allows users to search for multiple words at a time, using OR and
AND operators, in one or more books in the library. The latest version of the
search engine also has options for disregarding different combinations of alif-
hamza and dotted and undotted final yāʾs and tāʾ marbūṭas.

Although the inbuilt tools of some of these digital libraries can be used for
complex searches in one or more documents, the existing programs are very
rigid and do not give researchers control over what they can do with the texts.
Digitized texts offer new research opportunities that were unthinkable with
printed texts, but even simple tasks such as word counting, let alone more ad-
vanced operations, such as an analysis of vocabulary diversity, are not possible

 For an overview of the most important websites, see http://islamichumanities.org/resources/.
Some text collections, such as al-Jāmiʿ al-Kabīr, are still distributed on physical data carriers like
flash drives and hard disks.
 The first version of the program (April) did not have a designated website but was dis-
tributed on the Ahl al-Hadeeth forum (www.ahlalhdeeth.com [sic]). The library moved to its own
website in .

200 José Haro Peralta and Peter Verkinderen

with the tools offered by digital libraries. Moreover, search results cannot be ex-
ported for analysis and visualization in maps or graphs.

It must be added that the text collections also have a number of problems. In
his presentation “Collections of Text vs. Textual Corpora, or What We Have and
What We Need” at the Textual Corpora and the Digital Islamic Humanities Work-
shop in 2014 (October 17–18, Brown University),⁶ Maxim Romanov pointed out
that the currently available collections of digital texts are ill-suited for computa-
tional analysis: they aim at reproducing physical books rather than creating truly
digital editions of the texts; their scope is limited, often on an ideological basis;
the grouping into literary genres is inflexible and sometimes unhelpful; and
metadata is incomplete and cannot be updated. We could add that the quality
of the digitization is variable and not always based on high-quality editions.
Moreover, the critical apparatus and footnotes are not dealt with in a consistent
way.

Even if the collections of books that these digital libraries contain leave
much to be desired, they do offer large quantities of digitized texts, including
many of the most important sources for early Islamic history. These texts can
be exported and converted to a format suitable for computational processing,
such as .txt files. Once this is done, researchers can overcome the limitations
of the tools offered by the above-mentioned digital libraries by building their
own tools in a way that suits their needs.

The authors of this article have used the programming language Python to
build a number of tools designed to find and retrieve information relevant to
our research questions from Arabic texts. Programming languages are basically
languages designed to communicate instructions to computers (and other ma-
chines). Python offers the advantage of being a a dynamic language, which
means that a piece of code can be written and tested immediately, allowing
for an interactive development experience of trial and error that eases the learn-
ing curve considerably. Python also contains a number of modules that are very
suitable for textual analysis.

One of these modules that we are going to use extensively in this article is
the RE (Regular Expressions) module. A regular expression is a sequence of char-
acters that defines a pattern. This pattern can be used to search, select, and re-
place sequences of characters in a text.⁷ For example, if we want to find the word

 For the workshop program, see http://islamichumanities.org/workshop-/
 For a gentle introduction to regular expressions, see Michael Fitzgerald, Introducing Regular
Expressions (Sebastopol, CA: O’Reilly Media,). More advanced coverage of this topic can
be found in Jeffrey E. F. Friedl, Mastering Regular Expressions (Sebastopol, CA: O’Reilly

“Find for Me!”: Building a Context-Based Search Tool Using Python 201

‘color’ in a text, but we do not know whether it is written in American or British
spelling, we can use the following regular expression to match both forms:

colou?r

The question mark indicates that the preceding token (i.e., the ‘u’) may or may
not be there. Therefore both ‘colour’ and ‘color’ will match this pattern.

1. Jedli’s Main Functionalities

The authors of this chapter have built a data-mining toolkit for Arabic texts that
consists mainly of three functions, namely an indexer, a context search function,
and a highlighter.We will explain how these functions work, providing examples
of how we use them in our own work.We will also suggest how researchers work-
ing on different topics might benefit from using these tools. In the second part of
the chapter, we will focus on their technical aspects.

The first tool, the ‘Indexer’, lists all the pages in which a word appears. It can
be used to search for one word at a time or be fed with a whole checklist of
words, and it can undertake the search within one or more sources at the
same time. Furthermore, it can either return a simple list of page numbers, or
—for every page number—the surrounding context in which the word is found.

The main advantage of this function over manually searching for words in
indexes of printed volumes is obviously its time-saving effect: the more words
one needs to look up, and the more volumes one needs to search, the more
time is saved. The Indexer is also more accurate than traditional indexes. In a
test using the index of the Bibliotheca Geographorum Arabicorum,⁸ a collection
of exemplary editions of Arabic texts, the Indexer found significantly more re-
sults per search word than the printed index.

Furthermore, this Indexer is more powerful and flexible than any of the in-
built search tools in the above-mentioned digital libraries, which all have index-
ing functions that can index a word in multiple sources at the same time. For
one, it allows the user to index not only one term at a time, but also to feed it
a checklist of search terms, which can be re-used and adjusted at any time.
This is very convenient, since new relevant search terms may turn up while

Media,) and in Jan Goyvaerts and Steven Levithan, Regular Expressions Cookbook (Sebas-
topol, CA: O’Reilly Media,).
 Michael Jan de Goeje, ed., Bibliotheca Geographorum Arabicorum (vols.: Leiden: Brill, –
).

202 José Haro Peralta and Peter Verkinderen

going through the results of the first search; these new search terms can then
simply be added to the checklist for further indexing operations. Using regular
expressions, one can restrict the number of results, excluding instances that
are unlikely to be relevant. If we are looking for references to the province of
Fārs, for example, we might want to leave off the ‘outcomes list’ instances of
the nisba ‘al-Fārisī’ or cases in which the search word is preceded by numbers
(as the text is more likely talking about horsemen, fāris). Moreover, regular ex-
pressions can also be used to define patterns that account for different spellings
of words.⁹

The Indexer also gives the user full control over the output of the results: it
can either return a simple list of page numbers or also include the contexts in
which the word appears. The user can define how many context words before
and after the search word are needed in order to determine if a result is relevant.
One could also adapt the Indexer to define the context based on criteria other
than number of words, e.g., punctuation, a number of lines in a poem, the be-
ginning and end of a biography in a biographical dictionary, or an isnād in
ḥadīth works. In addition, the Indexer saves the results for further reference, cur-
rently in an HTML document, but it can easily be adapted to output the results in
a format that can be used for further analysis and visualization. For instance, the
results of a search could be saved in a .csv document,¹⁰ which can then be used
to produce a graph so as to visualize how the results are spread over a selection
of sources in order to spot patterns. If the search involves toponyms and is com-
bined with a database of coordinates, it would also be possible to produce a
map-based visualization of how different regions of the Islamic Empire are rep-
resented in a selection of texts.

The second tool we built is the ‘Context Search’ function. This tool was de-
veloped in the first instance to find information about the governors of our proj-
ect’s five key provinces. The number of sources that can provide information
about this is very large, and going through all of them with the help of the Index-
er would still require an enormous amount of time.We wanted to develop an ap-
proach that would allow us to gather some initial data quickly so we could start
working on research hypotheses sooner.

 To give only a few examples: defective spellings, different combinations of alif and hamza,
dotted and undotted tāʾ marbūṭas, and final yāʾs. See the second part of the article for practical
examples on how to build such regular expressions.
 CSV stands for ‘comma-separated values’; it is a common file format that is used to store tab-
ular data in plain text form. Each line of the file contains a record, and each record has the same
number of fields, separated by commas (or other delimiters).

“Find for Me!”: Building a Context-Based Search Tool Using Python 203

The basic idea behind the Context Search function is that relevant informa-
tion about a certain topic can be found if we can figure out in which kinds of
contexts (as defined by their vocabulary composition) it is likely to appear.
The Context Search function gives options to define contexts based on their
length (number of words), which terms must appear in them, and even which
words should not appear in them.¹¹ These checks are undertaken by feeding
the function with checklists of words. It is therefore very important to build
up these checklists carefully in order not to overlook relevant search results.

How we proceeded in our search for governors will illustrate how this tool
can be used. In a first step, we used the Indexer to look up all contexts in
which the name of a province was mentioned in one source. We then manually
selected those search results that were related to governors. In a next step, we
analyzed the vocabulary composition of these search results and identified the
‘trigger words’ in these contexts, on the basis of which we (consciously or uncon-
sciously) had decided that the text fragment talks about a governor. The most ef-
fective trigger word was found to be ʿalā in combination with the name of the
province (e.g., ʿalā Ifrīqiya, “in charge of Ifrīqiya”). Other trigger words included
wālī, wallā, wilāya, waliya, aqarra, ʿazala, ghalaba, fī yad, istakhlafa, ʿāmil, and
dīwān. These trigger words were put in a checklist, in a .txt document. We also
analyzed how close to the name of the province these trigger words were located
in order to define a word range that would limit irrelevant context while not ex-
cluding relevant context.¹² This word range is partly dependent on the verbosity
of the author: in the case of the –very concise– Taʾrīkh of Khalīfa b. Khayyāṭ, the
most effective word range consisted of eight words before and after the name of
the province. More verbose authors such as al-Ṭabarī might require larger con-
texts.

The Context Search function first runs the Indexer to find all instances of the
main search word in the text, setting a word range for the context. Instead of im-
mediately outputting all the search results into a list of page numbers and text
snippets, as the Indexer does, the Context Search has an intermediary step: it

 Al-Maktaba al-Shamela’s program allows the user to run a search with multiple search
words, which can be connected with AND and OR operators. This is helpful, but the basic search
unit in al-Maktaba al-Shamela is the page, which is not the most meaningful unit for textual
analysis: on the one hand, the search words might be spread over more than one page, in
which case our multiple-word search would not score a hit; and on the other hand, a page con-
tains up to , characters, which means that it is very possible that the search words, even if
they are on the same page, do not belong to the same context.
 The Context Search could also be adapted to use other types of context range, as described
above.

204 José Haro Peralta and Peter Verkinderen

checks whether one or more of the trigger words from our checklist appears in
the context. Regular expressions can again be used to account for different spell-
ings of both the main search word and the trigger words and to allow for specific
prefixes and suffixes to appear attached to these words but not to other charac-
ters. If a trigger word appears in the context, the result is put in the list of final
outcomes; if none of the trigger words appear in the context, the result could be
put into a separate list of ‘probably irrelevant contexts’ or immediately discard-
ed. This is an interactive process; carefully checking the output results for irrel-
evant contexts in the ‘relevant’ list (and vice versa), and tweaking the checklist
and the word range accordingly, will lead to ever better results.

One could also add another checklist of words that signal a context that is
very unlikely to be relevant. If we use the Context Search function to look for
governors of Fārs, for example, we can put expressions such as alf fāris, miʾat
fāris, etc. (which refer to cavalry and not to the province) into this list. The Con-
text Search function could then send contexts in which words from this list occur
to the irrelevant results list, if no other mention of Fārs is made in the same
context.¹³

Finally, the Context Search function can also be adapted so it can be fed with
a checklist of main search words instead of only one main search word. For ex-
ample, in the case of our own research, that checklist might include the names of
the five key provinces of our project (Ifrīqiya, al-Shām, al-Jazīra, Fārs, and Khur-
āsān). The function would then search for information about the governors of all
of these provinces at the same time.

The Context Search function is suitable for spotting passages in the sources
that potentially contain information about certain topics, so long as these pas-
sages can be defined by the presence of specific vocabulary. It could, for exam-
ple, be used to find information about the prices of certain products in a number
of sources. In this case, the main search word might be the term dīnār or a check-
list of main words that contains a number of currency units, including dirham,
qīrāṭ, and others, together with their plural forms. Another checklist might con-
tain a list of products whose prices we want to know, such as ḥinṭa, shaʿīr, or
khubz.

The third function of the Jedli toolkit, the ‘Highlighter’, marks search words
in a text with a user-specified background color. If we want different words to be
highlighted in different colors, we can feed the Highlighter with different lists of

 More checklists could be added, each with different rules for discarding and including con-
texts. The checklist mentioned in this paragraph’s example acts on the main search word; we
could, for example, build a third checklist that interacts with the trigger words of the first check-
list.

“Find for Me!”: Building a Context-Based Search Tool Using Python 205

words and apply a different color to each one of them. As with the Indexer, reg-
ular expressions can be used to reduce the number of irrelevant results. This
function is useful when we want to read through a whole text but pay special
attention to those passages that contain a number of keywords that are particu-
larly relevant for our research.

The Highlighter was designed to mark toponyms belonging to the five key
provinces of our project in the sources. Each researcher compiled a list of places
in their province. These lists were fed to the program,which then produced docu-
ments of the sources in which the selected words were highlighted. In the case of
toponyms that can apply to different places of the Islamic Empire (e.g., al-Sūs in
the Maghrib and in Khūzistān) or could figure in some contexts as something
other than a toponym (e.g., Fārs and fāris), they were moved to a second list
that was highlighted in a different color within the text. A third list was also
made, which contains words that often appear in conjunction with words from
the second list in contexts where these words are not the toponyms in the prov-
ince we are looking for (e.g., Khūzistān for al-Sūs, and alf, miʾa, etc. for fāris).
This is a process of trial and error: once the Highlighter is run on a text, irrele-
vant contexts can be spotted in which a specific word is marked. This word can
then be moved to the second checklist and these specific contexts analyzed to
see whether there are words connected to the search word that signal the context
is irrelevant. These signal words can then be added to the third checklist. The
result is that one can scroll through a text and identify relevant passages in
the blink of an eye, based on the color-coding.

The Highlighter can of course be used to highlight words other than topo-
nyms. It is useful in many of the same cases as the Context Search function,
but it can also be used to highlight structural elements of the text in order to
make it easier for the reader to navigate the text. In a chronicle, for instance,
one could highlight expressions that refer to years or dates in general; one
could also highlight words that frequently appear in isnāds (e.g., ḥaddatha, akh-
bara) so that one immediately sees where a new ḥadīth/khabar starts.

The output of the Highlighter function is an HTML document that can be
opened with any browser. The Highlighter inserts tags around the words to be
highlighted, which the browser translates into color. As an additional feature,
the program can attach a special symbol (e.g., ‘$’) to every word from the check-
lists. This symbol is not visible in the text,¹⁴ but it can be searched for, which
facilitates reaching those text passages that contain highlighted words. Google

 In the source code of the HTML document, the symbols are enclosed by tags with the <hid-
den> attribute to prevent it from displaying in the browser.

206 José Haro Peralta and Peter Verkinderen

Chrome has a useful feature that can be used in conjunction with the Highlight-
er: when conducting a search with Chrome’s built-in search function (Ctrl + F),
the browser indicates the location of every search result in the document with
a small yellow mark in the scrollbar to the right of the screen. If the hidden sym-
bol is searched for, all sections of the document that contain highlighted words
will be indicated in the scrollbar.

The tools we have described above have been made available to researchers
in the Jedli toolkit. This toolkit has been released in two forms: one is a set of
simple Python scripts that researchers can easily adapt to their own needs by ad-
justing the code. The other form of Jedli is designed for researchers who are not
(yet) willing to interact with programming languages and scripts, but still want
to use the powerful search capabilities of Jedli. Its graphical user interface,¹⁵ with
its buttons and input fields (see figures 9.1 and 9.2), looks like any other desktop
program and does not confront the user with its underlying scripts. On the down-
side, the program with graphical user interfaces is more difficult to modify and
tune to the specific needs of other researchers.

The remainder of this article is intended as an introduction to some of the
possibilities that Python and regular expressions offer for the development of
tools for textual analysis. It will take the guise of a tutorial on how to build sim-
plified versions of the Indexer and Context Search functions described above. It
is not intended as a full-blown introduction to Python,¹⁶ but will build up the
argument from very simple operations and explain all pieces of code in a way
that should be understandable for people without previous programming expe-
rience. All the code examples in this article are available online (https://github.
com/jedlitools/find-for-me).

 The graphical interface of the Jedli toolkit is implemented using the tkinter library, which
forms part of the standard package of Python. In order to learn more about this library and
how to use it, see the following books: Mark Lutz, Programming Python (Sebastopol, CA: O’Reilly
Media,), –; Bhaskar Chaudhary, Tkinter GUI Application Development (Birming-
ham: Packt Publishing,).
 For this, see any of the references mentioned by the Python Foundation at https://wiki.py
thon.org/moin/IntroductoryBooks (modified May ,) as good starting points for learning
the language. Especially recommended is Mark Lutz, Learning Python (Sebastopol, CA: O’Reilly
Media,).

“Find for Me!”: Building a Context-Based Search Tool Using Python 207

Figure 9.1. Jedli’s Graphical User Interface—main screen (February 2015)

Figure 9.2. Jedli’s Graphical User Interface—search options screen

208 José Haro Peralta and Peter Verkinderen

2. Basic Python Operations

In order to use Python, it needs to be installed on the computer.¹⁷ Once Python is
installed, we can start using it by clicking the icon of Python’s interactive inter-
preter, called IDLE, in the Start menu. IDLE functions basically like a text editor
that assists in writing code.¹⁸

Once we open IDLE, we have to create a new Python file by pressing Ctrl+n
(or using the menu: File > New File) and save it in a new folder. In order to make
things easier, we advise placing all the Python files and the texts that we are
going to analyze with them in the same folder.¹⁹ For the examples in this article,
we will use two texts: al-Balādhurī’s Futūḥ al-buldān and Khalīfa b. Khayyāṭ’s
Taʾrīkh, which can be downloaded to the recently created folder from the follow-
ing website: https://github.com/jedlitools/find-for-me. Other texts can also be
used for experimentation.²⁰

The first step in analyzing a text is ‘opening’ the text file, i.e., loading it into
memory so that it is accessible to the program for processing. Using the “balad-
huri_futuh.txt” file as an example, we can open the file with this line of code:

Code sample 1: ex1_basic_funcs.py
text = open('baladhuri_futuh.txt', mode='r', encoding='utf-8').read()

In this case, we assign the full text of the Futūḥ to a variable named text, using
the = sign.Variables are basically empty memory containers in which values can
be stored. Once a value is assigned to a variable in a Python file, we can refer to
this variable at any point within the same file. This means that, as long as we
keep working within this same Python file, any time we use the variable

 For the Windows operating system, the installation package can be downloaded from the
following URL: https://www.python.org/downloads/release/python-/. Python comes prein-
stalled on the Mac OS and most Linux distributions. However, it must be noted that in this ar-
ticle we use Python .. In case the reader has an older version, we advise updating it so the
code that we will present here is fully compatible. For more on how to install Python, see the
webpage of the Python Foundation or Lutz, Learning Python, ff.
 For more on IDLE, see Lutz, Learning Python, ff.
 If the .txt files are in a different folder, the directory path where the .txt files reside has to be
specified so the program can find them.
 Additional texts can be downloaded from al-Maktaba al-Shamela in .epub format (by click-
ing on the mobile phone icon). This format must then be converted to .txt format using a con-
verter such as Calibre or the converter that is distributed with the Jedli toolkit.

“Find for Me!”: Building a Context-Based Search Tool Using Python 209

text, we will be referring to the Futūḥ of al-Balādhurī.²¹ We can name variables
in almost any way we want;²² we could, for example, have opted also for ba-
ladhuri, futuh, or source instead of text.

open() is a built-in Python function that requires at least one argument (the
name of the file we want to open, in this case ‘baladhuri_futuh.txt’) and admits a
number of flags (optional parameters). Arguments and flags are written between
the parentheses and separated by commas. The two flags that are of interest for
us here are the mode and the encoding flags. With the mode flag, we specify
whether we want to open the file for ‘reading’ (r – the function is set to this
by default) or for ‘writing’ (w).²³ The encoding flag is of fundamental impor-
tance when working with non-English texts, since it specifies which protocol
the function must use to interpret the characters in the text. In this case, we
use the Unicode protocol utf-8. Note that the filename and the flags are all en-
closed between quotes; single or double quotes (' ' or " ") can be used for this.

The .read() at the end of the line is a method of open(); it specifies that
the program should load the text from the text file in memory as a string object,
i.e., as one continuous sequence of characters. Any change the program makes
to the text loaded into the memory will not affect the original text in the .txt file,
since we are only working with a representation of it loaded in the memory of
our computer.

Now the text is available for any kind of analysis we want to perform. To get
an idea of what the text looks like, we can print it. Printing the entire text could
overload the interpreter, so we will print only a ‘slice’ of the text:

Code sample 2: ex1_basic_funcs.py (continued)
print(text[0:500])

This will print the first 500 characters of the text. In order to run the code, hit the
F5 button. IDLE will ask to save the changes made in the file first; after clicking

 This also means that if we open a new Python file and want to work with the same text, we
have to load it in memory and assign it to a variable again, as we did here. There is more to this
topic than we can cover here; for more information on how variables work in Python, see Lutz,
Learning Python, ff.
 Only alphanumeric characters (numbers and letters) are allowed in the name of the variable.
No spaces are allowed (use underscore instead). By convention, we write variable names in
lower case; variable names should not be preceded or followed by underscores.
 It also allows for some additional options that do not concern us here. See Lutz, Learning
Python, ff and the Python documentation at “. Built-in Functions, open,” last modified
May , , available at: https://docs.python.org/./library/functions.html#open.

210 José Haro Peralta and Peter Verkinderen

OK, a new window (called the ‘shell’) will pop up, and the text will be printed
there.

We use square brackets behind the variable to refer to the position of the
characters that we want to print in the text. This is called slicing. Square brackets
can also be used to select one single character of the text (e.g., text[0] would
print the first character of the text); this is called indexing.²⁴

Another simple text operation is calculating how many characters it con-
tains; we can do this with this line of code:

Code sample 3: ex2_basic_funcs.py
print(len(text))

Pressing F5, we can see that our text contains 723,413 characters. Here we have
used the len() function, which counts how many elements an object contains.

2.1 Basic Search

To check how often a word appears in the text, or where, we have to import
the re (Regular Expressions) module. Importing this module in Python is as easy
as typing:

Code sample 4: ex3_basic_search.py
import re

Importing modules is usually done in the very first lines of the code. Like vari-
ables, once we import a module in a Python file, it remains available as long as
we keep working within the same file. If we want to use this module in a differ-
ent Python file, we must make the import statement at the very beginning of
our code. Here, we will be using the function findall() from the re module,
which searches for all the string sequences in the text that conform to a defined
pattern. In order to ensure that Python can find the function findall() in the
module re, we have to write re.findall():

 Index and slice notation in Python always starts with . That is, the first element of a string
or list (or any other indexable object) is , not . On the other hand, the last index number in a
slice refers to the character before which the slice will be cut off: in our example [:], the last
character of the slice will be character no. , i.e., the th character, since we start counting
from .

“Find for Me!”: Building a Context-Based Search Tool Using Python 211

Code sample 5: ex3_basic_search.py
results = re.findall(' ةرصبلا ', text)

print(results)

We store the outcome of the operation in the variable results. The findall()
function takes two arguments: the first is the pattern we are searching for, and
the second is the string in which the function should find this pattern. In our
case, the pattern is the literal string “ ةرصبلا ”.

The result of hitting F5 is a list of every word that matches the pattern we
have set. Notice that lists in Python are always symbolized by square brackets,
and that since our list is a list of strings, every instance in the list is enclosed in
quotes. In this case, because our pattern was unambiguous,we end up with a list
of repetitions of the search word, one repetition for every time it is present in the
text. This is arguably not extremely helpful in this form, but we will presently see
how we can use the findall() function in more meaningful ways. We could,
for example, count how many times the word is mentioned using the len()

function that we already encountered before:

Code sample 6: ex4_basic_search.py
print(len(results))

This will print the number of times the search word is mentioned in the text. The
power of regular expressions shows better when we build less ‘literal’ patterns,
that is, when we use special symbols to build patterns in a more abstract way.
For example, the symbol \w stands for any ‘word character’, which means any
letter or digit (so-called alphanumerical characters). This allows us to build a
rough regular expression to count all the words in the text:²⁵

Code sample 7: ex5_list_of_words.py
list_of_words = re.findall(r'\w+', text)

print(len(list_of_words))

In regular expressions, the backslash is used to escape (i.e., overrule) the default
meaning of a character and give it a different meaning. In the piece of code
above, the backslash escapes the literal meaning of the letter w, and \w refers
to any alphanumeric character. Some characters have a special meaning in reg-

 Note that the code samples in this chapter build on the previous code. If the reader keeps
working within the same Python file, this should not be a problem. If a new Python file is
opened, it is necessary to import the re module in the first line of the code and to assign the
Futūḥ of al-Balādhurī to the variable text again.

212 José Haro Peralta and Peter Verkinderen

ular expressions by default. For example, a dot always stands for ‘any character’;
in this case, the backslash escapes this meaning, so that \. refers to a full stop.
This use of the backslash may confuse the Python interpreter. It is therefore high-
ly recommended to write an r before all regular expressions that include back-
slashes; this signals to Python to interpret the string as raw literals and removes
any confusion over the backslashes.²⁶

The plus sign signifies one or more repetitions of the preceding token; in our
case, it will match any ‘word character’ until it reaches a non-word-character,
which could be a space, a line break, or a punctuation mark, for instance.
There are better ways to count words in a text,²⁷ but this is good enough for a
first experimental approach. Our outcome is 179,788 words.

In order to get an impression of how Python identifies words in the text with
the \w regular expression, we could print a ‘slice’ of the list of words, for exam-
ple the first 50 words:

Code sample 8: ex6_list_of_words.py
list_of_words = re.findall(r'\w+', text)

print(list_of_words[:50])

We have again used slice notation (see code sample 2), in this case applied to a
list. Note that on this occasion, we used the notation [:50], which is identical
to [0:50].We can transform this list into a set, which is another Python object
similar to the list, but which contains only one instance of every element (that is,
it eliminates duplicates), and it does not store its elements in any particular
order. It could serve as a rough approximation to know how many unique
words the text contains (taking into account all the warnings given in footnote
27 about the inaccuracy of the approach taken here for word counting). We do
this with these two lines of code:

Code sample 9: ex7_unique_words.py
unique_words = set(list_of_words)

print(len(unique_words))

 See the Python documentation on “Regular expression operations” on this phenomenon
(https://docs.python.org/./library/re.html). On raw strings, see Lutz, Learning Python, –
.
 Because the \w regular expression matches any alphanumerical character, in this case, we
also count numbers as words. Note also that this function does not identify prefixes that are at-
tached to words (such as the conjunction wa‐) as separate words. For a more accurate approach,
use the tokenizer that is distributed with the Natural Language Toolkit (NLTK), as discussed
below.

“Find for Me!”: Building a Context-Based Search Tool Using Python 213

Our outcome is 19,781.
For many research topics, keywords can be identified that allow us to select

relevant passages in primary sources. Counting how frequently such words ap-
pear in a text can be useful at the beginning of a research project, when we
want to select those texts that can potentially provide more information about
the topic we want to study. A useful function in this context would be one
that tells us how frequently a word appears in a text. The following lines of
code do exactly that:

Code sample 10: ex8_word_frequency.py
word = ' ةضرف '

word_instances = re.findall(word, text)

freq_word = len(word_instances)

freq_word = str(freq_word)

print(word + ' appears ' + freq_word + ' times in this text')

Testing this code (hit F5) with the Futūḥ al-Buldān of al-Balādhurī, we get the fol-
lowing outcome:

ةضرف appears 2 times in this text

The first thing we do in this piece of code is to assign the string ةضرف to the var-
iable word. Then we use this variable in the findall() function, in order to
search for ةضرف in al-Balādhurī’s Futūḥ, which is assigned to the variable
text. We also use the len() function to count how many outcomes the search
returns, and we store this value in the variable freq_word. In order to output
the results to the Python shell, we use the print statement, which in this case
uses the + sign to concatenate sequences of strings, including the string ةضرف ,
which is stored in the variable word. Notice that the len() function always re-
turns an integer (a data type different from string), so in order to be able to con-
catenate the value of the variable freq_word with the other strings in the
print statement, we first need to convert it from integer to string, for which
we use the function str().

We can transform this code into a function so we can re-use it at a later point
in the file. The following piece of code shows how to do it:²⁸

Code sample 11: ex9_word_counter.py
def word_counter(search_word, search_text):

freq_word = len(re.findall(search_word, search_text))

 In IDLE, lines can be indented with the command Ctrl +].

214 José Haro Peralta and Peter Verkinderen

freq_word = str(freq_word)

print(search_word + ' appears ' + freq_word + ' times in this text')

Functions are defined in Python with the def (‘define function’) statement,
which must be followed by the name we want to give our function as well as pa-
rentheses and a colon. The parentheses can be empty, or they can contain the
arguments needed for the function to work properly. In this case, the arguments
are two variables, which we called search_word and search_text. These
variables are then used in the body of the function: search_word will be the
search pattern in the findall() function, and search_text will be the string
to be searched in that same function. The actual names of the variables are not
important, as long as we keep the same names in the body of the function when
we refer to them.

Now we can start using (‘calling’) this function whenever we need it:

Code sample 12: ex9_word_counter.py
word_counter(' ةضرف ', text)

word_counter(' ةرصبلا ', text)

As can be seen in this example, we ‘call’ the function by writing its name and spec-
ifying the variables of the function. Note that the variables in the function call follow
the same order as the variables in the function definition: search_word will be

ةضرف in the first function call and ةرصبلا in the second; search_text will be
the text variable to which we assigned above al-Balādhurī’s Futūḥ al-Buldān.

2.2 Generating an Index

With all of these concepts and tools under our belt, we are now ready to extend
the capabilities of these functions so they tell us also where exactly the word ap-
pears in the text—that is, we can build a simple index generator.

In order to generate an index, we need to find the word or expression we
search for and the page reference. The findall() function from the re module
that we have already encountered will serve our purposes for this task well. We
have already seen how to find a word in a document using that function. The
tricky part in this case is figuring out how to find both the word and its related
page number in a single search.

“Find for Me!”: Building a Context-Based Search Tool Using Python 215

If we have a look at the .txt document,²⁹ we will see that the pagination fol-
lows a very clear pattern, which looks like this:

263:ةحفصلا¦1:ءزجلا

This pattern is followed throughout the document, and therefore we can describe
it in a regular expression: we first have the Arabic word for volume (ءزجلا), fol-
lowed by a colon, a white space, one or more digits that represent the volume
number, another white space, a broken bar, another white space, the Arabic
word for page (ةحفصلا), colon, again a white space, and finally one or more digits
that represent the page number. Digits are symbolized in regular expressions by
\d, and as we have already seen, the + sign can be used to indicate a repetition
of the same token. If we want to express ‘one or more digits’, we write \d+.

If we try to write this regular expression, we will run into a problem with the
IDLE editor, because mixing (right-to-left) Arabic and (left-to-right) Latin charac-
ters in the code will mess up its display, rendering it unreadable:

ءزجلا : \d+ ةحفصلا¦ : \d+

One solution to deal with this is to assign the Arabic letters to variables and sub-
stitute them in the regular expression, using the + operator to concatenate the
strings, as we have seen before:

Code sample 13: ex10_index_generator.py
juz = ' ءزجلا :'

safha = ' ةحفصلا :'

page_regex = juz + r' \d+ ¦ ' + safha + r' \d+'

Now that we know how to find page numbers and how to search for words, we
need to find a way to connect these two elements.We can do this by including in
our regular expression our search word, the page_regex, and all the charac-
ters in between. Such a regular expression would look like this:

search_regex = word + r'.+?' + page_regex

As we have seen above, the dot is a special character that matches any character.
The question mark tells the regular expression not to be greedy, that is, to stop at

 We recommend using the text editor EditPad Pro (http://www.editpadpro.com/, only availa-
ble for Windows) for this, since it can handle large .txt documents better than other text editors.

216 José Haro Peralta and Peter Verkinderen

the first match of the page_regex it encounters. With this regular expression,
the result of our search would be a block of text that starts with the search
word and ends with the page number of the page on which the search word
was found. However, what we really want in the final result is just the page num-
ber. To achieve this, we add parentheses around the elements of the regular ex-
pression we are interested in, which will ensure that only those elements will be
included in the list of results produced by the findall() function. Because
these parentheses ‘capture’ the elements they contain, they are called capturing
groups in regular expressions. The resulting function would look like this:

Code sample 15: ex11_index_generator.py
def index_generator(word, text):

juz = ' ءزجلا :'

safha = ' ةحفصلا :'

page_regex = juz + r' \d+ ¦ ' + safha + r' \d+'

search_regex = word + r'.+?(' + page_regex + ')'

pagination = re.findall(search_regex, text, re.DOTALL)

return pagination

As we have seen before, regular expressions in Python are always strings, and we
can concatenate strings by using + signs. Note that the brackets of the capturing
group need to be put between pairs of quotes, because they are part of the search
regex (short for regular expression) string; the variables need to be outside of the
quotes, however, because otherwise Python will consider them literal strings.

This function contains two new elements that need a short explanation: the
first is the use of the flag re.DOTALL in the findall() function. We said be-
fore that the dot in a regular expression matches any character, but in fact, it
matches any character except a newline, which is represented by the \n charac-
ter in a string. If we include the flag re.DOTALL in the findall() function,
the dot will match anything, including the newline character. The second is
the return command. Contrary to the print statement, which outputs the re-
sult of the function directly to the Python shell, the return command returns
the result of the function (in this case, the list pagination), so we can assign
it to a variable and use it later in our code.We can now call our new function—
adding between its parentheses the two arguments it needs: the search word and
the reference to our text—and print the outcomes:

Code sample 16: ex11_index_generator.py
index = index_generator(' ةضرف ', text)

print(index)

“Find for Me!”: Building a Context-Based Search Tool Using Python 217

For the word furḍa, the index_generator() will return the following out-
come:

['286 : ةحفصلا ¦ 1 : ءزجلا ' ,'333 : ةحفصلا ¦ 1 : ءزجلا ']

In case the word we are looking for appears very frequently in the text, the list of
results will look cluttered. It would be better if we printed every search result on
a new line. This is easily done with the following piece of code:

Code sample 17: ex12_index_generator.py
index = index_generator(' ةضرف ', text)

for page in index:

print(page)

Here, we use a for loop. In a for loop, the header line of the for statement
ends with a colon, and the line(s) that belong to its scope are indented. Note
that we use page here as a variable to refer to every element in the index list,
but we could have given this variable any other name.We can read the statement
as: ‘print every element in index’. This is the result if we run the index_gen-
erator() now:

333 : ةحفصلا ¦ 1 : ءزجلا

286 : ةحفصلا ¦ 1 : ءزجلا

Loops are very powerful and allow us to make our index function much more
useful in a number of ways. For example, they allow us to search for several
words at the same time:

Code sample 18: ex13_index_more_words.py
search_words = [' ةضرف ', ' ةرصبلا ', ' ةفوكلا ']

for word in search_words:

index = index_generator(word, text)

print(word)

for page in index:

print(page)

This will make an index for every word in the list search_words.We can take
this approach a step further. Instead of using a list of search words defined with-
in our Python code, we could write the words we want to search for in a separate
file, e.g., a .txt file. This would be especially convenient if we were to handle a
large list of words. Such a file can be accessed by Python with the open() func-
tion we used before (see code sample 1) and its list of words assigned to a var-

218 José Haro Peralta and Peter Verkinderen

iable. For this, we have to open a text editor and write every search word on a
new line (without leaving empty lines between them). Then we save the file in
the folder with our source file (in our case, the al-Balādhurī text file), making
sure we give the file a .txt extension (which is the default in a text editor).³⁰
We name this document “checklist.txt.” The following lines of code show how
to access the checklist and build an index of its words:

Code sample 19: ex14_index_checklist.py
search_words = open('checklist.txt', mode='r',

encoding='utf-8-sig').read().splitlines()

for word in search_words:

index = index_generator(word, text)

print(word)

for page in index:

print(page)

The open() function loads the entire document as one string into memory. The
encoding name in this case is ‘utf-8-sig’, which is here necessary in order to drop
a byte order marker sequence that would otherwise appear attached to the first
word in the list.³¹ Notice the splitlines() method added at the end of the
open() function. This method builds a list in which each line of the original
document is an individual element. Since we wrote every search word on a
new line, each search word from our checklist document is now stored as a sep-
arate element in the search_words list.

We can go even further: instead of indexing these search words in one text at
a time, we could index them in a collection of texts stored in a specific directory
or folder. For this, we first need to create a sub-directory within the directory in
which we work and store in it all the sources in .txt format that we want to index.
We call this directory ‘sources’. The following code shows how to build an index
of all the words contained in the checklist.txt file for each of the texts stored in
the sources directory:

Code sample 20: ex15_index_directory.py
import os

search_words = open('checklist.txt', mode='r',

encoding='utf-8').read().splitlines()

for filename in os.listdir('sources'):

text = open(filename, mode='r', encoding='utf-8').read()

 You can download a sample checklist from: https://github.com/jedlitools/find-for-me
 For more on byte order markers, see Lutz, Learning Python, ff.

“Find for Me!”: Building a Context-Based Search Tool Using Python 219

print(filename)

for word in search_words:

index = index_generator(word, text)

print(word)

for page in index:

print(page)

In this piece of code we import a new module, called os (‘operating system’),
which contains a function named listdir(). This function builds a list of
all the file names in the directory specified as an argument for the function,
in our case sources. For every file in the list, we first load the text into mem-
ory, then print the name of the file, and finally index each of the words from the
checklist.txt file (assigned to the variable search_words) in that text. Then the
program moves on to the next file in the folder, until it reaches the last file.

2.3 Enhanced Search³²

One problem with searching Arabic texts is that they include diacritics, such as
vowels, shaddas, and the like, in an unpredictable way. Since these diacritics are
represented by separate characters in the text, their presence can sabotage our
searches. The easiest way to deal with this problem, if we are not specifically in-
terested in the vowels, is to temporarily remove all of them from the text loaded
in memory. We can do this by using the sub() function from the re module,
which allows us to replace one string with another. In our case, we will replace
all the diacritics with empty strings (which are coded in Python by a pair of
quotes with nothing in between):

Code sample 21: ex16_denoise.py
denoised_text = re.sub(r"ᴏَ|ᴏً|ᴏُ|ᴏٌ|ᴏِ|ᴏٍ|ᴏْ|ᴏّ|ـ", "", text)

In addition to the diacritics, we also included the kashīda character.³³ As can be
seen, all diacritics are separated by the pipe (|) symbol, which in regular expres-
sions signifies the or operator. Removing the diacritics from the text makes

 The discussion that follows draws heavily on regular expressions-related concepts. For fur-
ther clarification on any of these concepts, see the references mentioned in note .
 The kashīda is the character used to elongate (taṭwīl) Arabic characters, e.g. in هللامســـــــب .

220 José Haro Peralta and Peter Verkinderen

searching for words and expressions easier, since we do not have to account for
all possible vowelizations of the words.³⁴

So far, we have used regular expressions in a limited way, searching only for
simple strings. This may not be a problem if we search for words that form a
unique sequence of characters, like ةرصبلا , but it would not return good results
if we looked for a word like مكح . Running the word_counter() function that
we built before (code sample 11) with the string مكح in the Futūḥ al-buldān returns
112 hits. The problem is that these hits also include many potentially undesirable
outcomes, such as مكحلا , مكحأ , مكحلاصأ , ةمكح and so forth, because these words also
contain the string مكح .

In order to limit our search results only to the words we are interested in, we
need to use more complex regular expressions. For example, if we only wanted
all instances for the word مكح , we could use the expression \b, which identifies
boundaries around the word. The expression \b مكح \b implies that no alphanu-
meric character can precede the ḥāʾ or follow the mīm. As previously stated,
when we write regular expressions that contain special characters, we have to
write an r before the opening quotes of the regex string, like this:

Code sample 22: ex17_word_boundaries.py
word = r"\b مكح \b"

word_counter(word, text)

This returns only 10 results. However, in Arabic, a number of prefixes and suffix-
es can be attached to a word without actually altering its meaning, so we may
want to include in our list of results all instances of the word with those affixes.
For instance, if we also want to include the word when it is preceded by the con-
junction wa-,we can use this regular expression: \bو? مكح \b. It will first look for
a word boundary, then zero or one occurrences of a wāw, then the string مكح , and
finally another word boundary. The question mark after the wāw serves to make
the conjunction optional, that is, to search for the word both with and without it.
If we run the word_counter() function with this new regular expression, we
obtain 12 results (ex18_prefixes_conjunctions.py).

If we also wanted to include the prefix fa-,we can use the pipe (|) character,
which symbolizes the or operator, between the prefixes: ف|و . To make the pres-
ence of the prefixes optional, we will need to group them between parentheses,
followed by the question mark: (ف|و)?. As we have seen before, however, the
parentheses form a capturing group, which means that only the elements within

 See Maxim Romanov, “Python Functions for Arabic,” al-Raqmiyyāt: Digital Islamic History,
January , , available at: http://maximromanov.github.io//–.html.

“Find for Me!”: Building a Context-Based Search Tool Using Python 221

the parentheses will be returned as an outcome.We therefore need to include the
prefixes in a non-capturing group, which is formed by placing a question mark
and a colon after the opening parenthesis: \b(?: ف|و)? مكح \b. This regular ex-
pression yields 16 results (ex19_prefixes_conjunctions.py).

Building on this regular expression, we can now build an expression that in-
cludes all the personal prefixes that مكح as an imperfect verb can have, in addi-
tion to the conjunctions fa- and wa-. Since we can have only one of the conjunc-
tions combined with one of the personal prefixes, we just have to add an
optional group with the verbal prefixes after the conjunctions in our regular ex-
pression: \b(?: ف|و)?(?: ا|ن|ي|ت|أ)? مكح \b. This time, the function returns 22
results (ex20_prefixes_verbs.py).

If we take into account that prefixes in Arabic always appear in the same rel-
ative order, as shown in Table 9.1, we can build a regular expression that uses
optional non-capturing groups to define the most frequent combinations of pre-
fixes. Such a regular expression could look like this (ex21_prefixes_all.py):

\bأ?(?: ف|و |ب|ل:?)?س?ل?(ا|ن|ي|ت|أ|ك)?(?: لا|لل)?(?: إ|م|ا)? مكح \b

Another approach would be to group all prefixes together in one
non-capturing group and to define the maximum number of possible
combinations among them by using curly brackets—for example:
\b(?:ل|ك|ب|ف|و|م| لا {0,6}(ا|ن|ي|ت|س|أ| مكح \b (ex22_prefixes_all.py).
Both regular expressions in ex21 and ex22 return the same number of outcomes
(93), but the latter regular expression is approximately 15 percent faster.

Using similar regular expressions, we can also deal with the suffixes. Table
9.2 shows the most frequent combinations of suffixes. In this case, we put the
optional groups after the search word (ex23_suffixes_all.py):
\b يمكح ?(?: او|ان|ات|نت|امت|ومت|مت|ن|تا|و|ي|ا|ت :?)?ن?(ن|امه|نه|مه|اه|ه|نك|امك|مك|ك|ان|ي|ين|ى|ة)?\b

As with the prefixes, another approach would be to group all suffixes togeth-
er and indicate between curly brackets how many of them can be combined at
the same time (ex24_suffixes_all.py):
\b مكح (?: ات|ك|نت|نه|تا|ين|او|ي|امه|نك|ومت|امك|ة|مك|مه|مت|ت|ان|اه|امت|ا|ى|ه|ن|و){0,4}\b

Both regular expressions return 19 results.
We could now assign these regular expressions for suffixes and prefixes to

variables, which we can concatenate with the search string using the + sign:

Code sample 23: ex25_affixes_all.py
pre_all = r"(?:ك|ل|ب|ف|و| لا "{0,6}(ا|ن|ي|ت|س|أ|

su_all = r"(?: ات|ك|نت|نه|تا|ين|او|ي|امه|نك|ومت|امك|ة|مك|مه|مت|ت|ان|اه|امت|ا|ى|ه|ن|و){0,4}"

search_regex = r"\b"+pre_all+" مكح "+su_all+r"\b"

222 José Haro Peralta and Peter Verkinderen

Ta
bl
e
9.
1:

Re
la
ti
ve

or
de

r
of

pr
ef
ix
es

in
A
ra
bi
c

6

in
te
rr
og

at
iv
e

pa
rt
ic
le

co
nj
un

ct
io
n

af
fi
rm

at
iv
e/

en
er
ge

ti
c

pa
rt
ic
le

la
-

fu
tu
re

te
ns

e
pa

rt
ic
le

pr
ep

os
it
io
n
li-
,
bi
-,

ka
-

ar
ti
cl
e

pa
rt
ic
ip
le

/
m
aṣ
da

r
pr
ef
ix

m
u-

[s
te
m

pr
ef
ix
es

(v
er
bs

)]
a)

li-
+
ju
ss
iv
e
/s
ub

ju
nc
ti
ve

pe
rs
on

al
pr
ef
ix
es

(v
er
bs

)
no

un
of

in
st
ru
m
en

t
/

pl
ac
e
m
-

pe
rf
ec
t
pr
ef
ix

i-
أ

|و
ف

ل
س

ك
|أ|ل|ب

|ت
ا|ن|ي

لا
م|إ
ا|

[
|أ

ت
ن|

س|
ت

]

Ca
te
go

ri
es

in
co
lu
m
ns

on
e
to

se
ve
n
ca
n
be

co
m
bi
ne

d;
pr
ef
ix
es

in
si
de

th
e
sa
m
e
ca
te
go

ri
es

ar
e
m
ut
ua

lly
ex
cl
us
iv
e.

a)
S
in
ce

ve
rb
al

st
em

s
ar
e
no

t
on

ly
de

te
rm

in
ed

by
pr
ef
ix
es
,
bu

t
al
so

by
in
fi
xe
s,

w
e
w
ou

ld
op

t
to

m
ak

e
a
se
pa

ra
te

se
ar
ch

w
or
d
fo
r
ev
er
y
ve
rb
al

st
em

w
e

lo
ok

fo
r.

“Find for Me!”: Building a Context-Based Search Tool Using Python 223

There is still another problem when dealing with digital Arabic texts, which is
that hamzas, maddas, and waṣlas are not written in a consistent way. Since
these combinations have their own Unicode representations, they are considered
separate characters in our searches. For example, if we search for the word رغصأ

with hamza in the Taʾrīkh of al-Ṭabarī, we obtain 43 outcomes. However, the text
also contains an additional 27 instances of the word رغصا written without the
hamza, which did not show up in our list of results for رغصأ with hamza.

Table 9.2: Relative order of suffixes in Arabic

suffix type suffix type Arabic combined suffixes

 nisba -ī ي ي

2 female ending tāʾ ت

او|ان|ات|نت|امت|ومت|مت|ن|تا|و|ي|ا|ت

female ending alif ا

nominal inflection suffixes
without nūn

تا|و|ي|ا

verbal inflection suffixes
without indicative-specific
nūn

او|ان|ات|نت|امت|ومت|مت|ن|تا|و|ي|ا|ت

 verbal inflection final nūn ن
ن

energetic suffix -anna ن

 tāʾ marbūṭa, alif maqṣūra ى|ة

ن|امه|نه|مه|اه|ه|نك|امك|مك|ك|ان|ي|ين|ى|ة
pronominal suffixes مه|نه|مه|اه|ه|نك|امك|مك|ك|ان|ي|ين
nominal inflection final
nūn

ن

Categories in rows one to four can be combined; suffix types within the same category are
mutually exclusive so they cannot be combined.

There are two ways to deal with this problem, so that our searches yield all
the results we want. One is similar to what we did with the short vowels: replace
all combinations of alifs with hamzas, maddas, or waṣlas in the text by simple
alifs, using the sub() function from the re module that we have already used:

Code sample 24: ex26_alifs.py
modified_text = re.sub("ٱ|آ|إ|أ ", ,"ا" text)

If we perform this operation, there will be no more combinations of alif with
hamza, madda, or waṣla in the text, so we would only have to search for رغصا

without hamza to obtain all 70 results.
Another option is to act on the level of the search word rather than the

searched text: we could make explicit that we are searching for any of the alif
combinations:

224 José Haro Peralta and Peter Verkinderen

Code sample 25: ex27_alifs.py
search_results = re.findall("[اٱآإأ] رغص ", text)

The square brackets in a regular expression define character classes, which will
match any of the characters inside the brackets. This regular expression also
yields 70 results in the text of al-Ṭabarī.

The tāʾ marbūṭa and the alif maqṣūra suffer from similar problems as the alif
in our texts: sometimes the dots above a tāʾ marbūṭa or the dots under a yāʾ are
left out, and sometimes the alif maqṣūra is dotted. We can use the same two
strategies as with the alifs to deal with these problems.³⁵

2.4 Contextual Search

We will now show the basics of a search function that allows the user to define
the context in which search words should occur.³⁶ In order to illustrate how we
implemented the context_search() function of the Jedli toolkit, we will use
here the case of Ifrīqiya in the Taʾrīkh of Khalīfa b. Khayyāṭ as an example.

The first thing we need to do is to create a new .txt file (using a text editor),
which we might call governors_checklist.txt, and save it in the same directory in
which we store our Python files. In this document, we have to write down the list
of trigger words related to governmental functions mentioned at the beginning of
this article, one word in each line (avoiding empty lines), as we did when we cre-
ated the checklist.txt file (code sample 19).³⁷ Then we have to load the text of
Khalīfa’s Taʾrīkh into memory and assign it to a variable, just as we did before
with the text of al-Balādhurī. We will also remove its vowels so our searches
can work effectively:

Code sample 26: ex28_context_search.py
import re

 We could replace all instances of the tāʾ marbūṭa in the text with a hāʾ without dots, and all
instances of alif maqṣūra with normal yāʾ with the following regular expressions:
modified_text = re.sub("ة", ,"ه" text)

modified_text = re.sub("ي","ى", text)

If we want to do the change on the level of search, we can use the following regular expressions:
search_results = re.findall(" رصبلا [هة]", text)

search_results = re.findall(" لوم ,"[يى] text)

 See above for more on this function.
 You can download the .txt file containing the list of words from https://github.com/jedli-
tools/find-for-me.

“Find for Me!”: Building a Context-Based Search Tool Using Python 225

text = open('khalifa_tarikh.txt', mode="r", encoding="utf-8").read()

text = re.sub(r"ᴏَ|ᴏً|ᴏُ|ᴏٌ|ᴏِ|ᴏٍ|ᴏْ|ᴏّ|ـ", "", text)

This piece of code nicely illustrates how a variable works like an empty box. As-
signing the open() statement to the variable text, we put Khalīfa’s text into the
box; then we take it out of the box to remove all vowels with the sub() opera-
tion and put the modified version back into the same text box.

The next thing we need is to write a function that returns a list of words from
the governors_checklist.txt file. The following code, based on what we saw in
code sample 19, does the job:

Code sample 27: ex28_context_search.py
def search_words(checklist):

search_words = open(checklist, mode='r',

encoding='utf-8-sig').read().splitlines()

return search_words

Notice that we use here the return command instead of the print statement,
as we did in code sample 15. Now we have to find a way to connect each of the
terms from the checklist with the name of the province we are interested in. In
order to facilitate this task, we will search first for all contexts in which the name
of a region appears, and then check whether in those contexts we can find one of
the words from the checklist. But first, we have to figure out how long the context
should be—that is, how many words around the name of the region we should
retrieve from the text to make sure that government-related words are going to
appear in it, in those cases in which the chronicler is giving information
about the governors of the region.

In our analysis of Khalīfa’s text, we found that the optimal context length for
this consists of eight words on both sides of the search word (the name of the
region in this case). In order to define words, we will use a regular expression
with a pair of special characters: \s and \S.The former refers to any whitespace
character (space, tab, etc.), the latter to any character that is not a whitespace
(which will include not only word characters, but also line breaks, punctuation
marks, and the like). Essentially, we are defining words here as sequences of one
or more non-whitespaces followed by one or more whitespaces.³⁸ The following

 Note that this assumption would not be valid for linguistic analysis, because the definition
of ‘word’ that we use here also includes punctuation marks and other non-alpha-numeric char-
acters.

226 José Haro Peralta and Peter Verkinderen

regular expression would capture a context of zero to eight words around a var-
iable called region:

Code sample 28: ex28_context_search.py
r"(?:\S+\s+){0,8}"+region+r"(?:\s+\S+){0,8}"

Note that we expect the variable region to be preceded and followed by a
whitespace; for this reason, the \s and \S characters in the regular expression
appear in reversed order on both sides of the variable region.

In order to substitute the Arabic word for Ifrīqiya with the variable region
within the regular expression developed above, we have to take into account that
this name can appear under a number of variants in Arabic texts: the alif might
bear the hamza either above or below, or not bear a hamza at all; the word might
end either in a tāʾ marbūṭa, which might bear the dots or not, or in an alif. Be-
sides, it is possible that the word is preceded by a conjunction and/or a prepo-
sition. This is therefore a good case in which we can apply the techniques descri-
bed above to deal with these kinds of situations:

Code sample 29: ex28_context_search.py
region = r"[لبفو]{0,2}"+r"[آإأا]" +" يقيرف " +r"[هةا]"

Now we can use the function findall() from the re module in order to re-
trieve from the text all contexts in which the word Ifrīqiya appears. The following
piece of code achieves this:

Code sample 30: ex28_context_search.py
def context_search(region, checklist):

gov_words = search_words(checklist)

regex = "(?:\S+\s+){0,8}"+region+"(?:\s+\S+){0,8}"

contexts = re.findall(regex, text, re.DOTALL)

outcomes = []

for passage in contexts:

for word in gov_words:

pre_all = r"(?:ك|ل|ب|ف|و| لا "{0,6}(ا|ن|ي|ت|س|أ|

su_all = r"(?: ات|ك|نت|نه|تا|ين|او|ي|امه|نك|ومت|امك|ة|مك|مه|مت|ت|ان|اه|امت|ا|ى|ه|ن|و){0,4}"

regex_w = r"\b" + pre_all + word + su_all + r"\b"

if len(re.findall(regex_w, passage)) > 0:

passage_page = index_generator(passage, text)

passage = re.sub(r"\n", " ", passage)

outcomes.append((passage, passage_page))

break

return outcomes

“Find for Me!”: Building a Context-Based Search Tool Using Python 227

We use the search_words() function we defined above to assign the list of
words related to governors to the variable gov_words. Then we use the regular
expression we defined before in code sample 28 to identify all the contexts in
which the name of the region appears. We store the outcomes of our search in
the variable results. Then we create an empty list, named outcomes,

which we will presently use to store the final results of our function. After
that, we check for each of the passages in the results list to see whether
they contain any of the trigger words³⁹ from the gov_words list. For this, we
have to use two for loops—one to step through all the passages stored in the
variable contexts, and another to iterate through each of the words in the
gov_words list; an if statement checks if the condition is met.⁴⁰ If the fin-

dall() function finds at least one instance of a trigger word in the passage,
we use the index_generator() function we defined in code sample 15 to
find its page number. We then use the append() method to add to the out-
comes list a tuple⁴¹ that contains two elements: the passage itself and the
page number. In case a passage contains more than one of the words from the
gov_words list, it would be added to the outcomes list once for every word,
because the if statement is performed for each word in the gov_words list.
In order to avoid this, we use a break statement, which will stop the for

loop that steps through the gov_words list as soon as the condition is met
once and the passage has been added to the outcomes list.

In order to call the context_search() function, we have to add the re-
quired arguments between the parentheses: the name of the region (in our
case, the regex formerly defined and stored in the variable region) and the
name of the file containing the list of words related to governors. The function
will return the variable outcomes, which must be stored in another variable
(here governors) so we can print the results:

Code sample 31: ex28_context_search.py
governors = context_search(region, 'governors_checklist.txt')

 We use the regular expressions for the prefixes (pre_all) and suffixes (su_all) that we
developed earlier to include possible combinations of affixes that can appear around the trigger
words.
 On the ‘if ’ statement, see Lutz, Learning Python, ff.
 A tuple can be described as a list that is locked: it is immutable; its elements cannot be
changed. Contrary to a list, which is enclosed in square brackets, a tuple is always between pa-
rentheses.

228 José Haro Peralta and Peter Verkinderen

If we print the variable governors,we will get a list of all the tuples containing
the relevant passages and their page numbers that the function has returned.
This output is not very readable. In order to produce a more user-friendly format-
ting, we can print these values in the following way:

Code sample 32: ex29_context_search.py
e=1

for s, p in governors:

print(e, "\n", s, "\n", p, "\n\n")

e = e+1

We use a for loop to step through each of the tuples contained in the list returned
by the context_search() function. We assign variables for each of the two
elements in the tuple (s for the passage, p for the page) and print these separate-
ly, putting line breaks (\n) in between. This is called value unpacking, and it al-
lows us to handle separately the elements contained in a tuple.⁴² We can also
number the results by introducing a new variable, e, to which we initially assign
the value 1, and increment its value by another unit for every step in the loop.

The current version of the Jedli toolkit allows the user to undertake contex-
tual searches in this way, although we are currently working on an enhanced def-
inition of context that will allow the user to search for more complex contexts. In
the Jedli toolkit, the results are not printed to the Python shell, but saved as an
HTML file that we can then open with a browser. In the HTML file, the search and
trigger words are highlighted in different colors.

3. Conclusions

This article has introduced a number of basic functions that can be developed in
Python as building blocks for the implementation of a fairly complex context
search function. These building blocks are also core elements of the Jedli toolkit
for the textual analysis of Arabic works. The reader of this article will now hope-
fully understand the Jedli toolkit code without graphical interfaces and be able
to adapt it to their own needs and contribute to its improvement. Alternatively,
the reader could use these building blocks to develop their own code for textual
analysis.

 This is just an extended way of making variable assignments. For more on value unpacking,
see Lutz, Learning Python, ff and ff.

“Find for Me!”: Building a Context-Based Search Tool Using Python 229

Jedli is a basic toolkit for textual analysis, but it represents a first step in the
development of more complex tools for more advanced analyses of medieval
Arabic texts. One possible direction in the enhancement of Jedli could be to in-
tegrate it into existing third-party libraries for Python for complex textual anal-
ysis. One such library is the Natural Language Toolkit (NLTK), developed origi-
nally by Steven Bird (University of Melbourne), Edward Loper (BBN
Technologies), and Ewan Klein (University of Edinburgh).⁴³ This library includes
tools such as a complex tokenizer, stemmers, and several others that allow us to
perform lexical or word frequency analysis as well as parts-of-speech tagging, to
name just a few. With the help of these tools and a few more lines of code, for
example, it is possible to build a simple program that analyzes and measures
the degree of similitude between two or more different texts.⁴⁴ More specialized
libraries are also available that let us perform more complex tasks, such as topic
modeling.⁴⁵

Future development in this direction could lead to the implementation of
complex analytical tools for linguistic analysis and textual criticism. As a single
algorithm can perform the same analysis over and over again through large col-
lections of texts, this approach could allow us to reach a better understanding of
the chroniclers’ sources, something on which the authors and compilers of the
extant text corpus often provided no information. It could also shed light on
how traditions were transmitted and modified over time, how words developed
new meanings, or how the style of language employed by medieval authors var-
ied according to chronology, geography, or literary genre.

Bibliography

Bird, Steven, Ewan Klein, and Edward Loper. Natural Language Processing with Python.
Sebastopol, CA: O’Reilly Media, 2009.

Chaudhary , Bhaskar. Tkinter GUI Application Development. Birmingham: Packt Publishing,
2013.

de Goeje, Michael Jan, ed. Bibliotheca Geographorum Arabicorum. 8 vols. Leiden: Brill,
1870–94.

 The best available introduction to the NLTK is Steven Bird, Ewan Klein, and Edward Loper,
Natural Language Processing with Python (Sebastopol, CA: O’Reilly Media,). See also the
website of the NLTK project: http://www.nltk.org/.
 Willi Richert and Luis Pedro Coelho, Building Machine Learning Systems with Python (Bir-
mingham, Packt Publishing:), ff.
 Ibid., ff.

230 José Haro Peralta and Peter Verkinderen

Goyvaerts, Jan, and Steven Levithan. Regular Expressions Cookbook. Sebastopol, CA: O’Reilly
Media, 2012.

Fitzgerald, Michael. Introducing Regular Expressions. Sebastopol, CA: O’Reilly Media, 2012.
Friedl, Jeffrey E. F. Mastering Regular Expression. Sebastopol, CA: O’Reilly Media, 2006.
Lutz, Mark. Learning Python. Sebastopol, CA: O’Reilly Media, 2013.
Lutz, Mark. Programming Python. Sebastopol, CA: O’Reilly Media, 2013.
Python Software Foundation. Python 3.4.3 Documentation. Last modified May 25, 2015.

Available at: https://docs.python.org/3/tutorial/.
Richert, Willi, and Luis Pedro Coelho. Building Machine Learning Systems with Python.

Birmingham, Packt Publishing: 2013.
Romanov, Maxim. “Python Functions for Arabic.” al-Raqmiyyāt: Digital Islamic History,

January 2, 2013. Available at: http://maximromanov.github.io/2013/01–02.html.

“Find for Me!”: Building a Context-Based Search Tool Using Python 231

