Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter 2020

5 The compatible solute ectoine: protection mechanisms, strain development, and industrial production

Hans Jörg Kunte, Thomas Schwarz and Erwin A. Galinski


Bacteria, Archaea, and Eukarya can adapt to saline environments by accumulating compatible solutes in order to maintain an osmotic equilibrium. Compatible solutes are of diverse chemical structure (sugars, polyols, amino acid derivatives) and are beneficial for bacterial cells not only as osmoregulatory solutes but also as protectants of proteins by mitigating detrimental effects of freezing, drying, and high temperatures. The aspartate derivative ectoine is a widespread compatible solute in Bacteria and possesses additional protective properties compared with other compatible solutes and stabilizes even whole cells against stresses such as ultraviolet radiation or cytotoxins. Here, it is our intention to go beyond a simple description of effects, but to depict the molecular interaction of ectoine with biomolecules, such as proteins, membranes, and DNA and explain the underlying principles. The stabilizing properties of ectoine attracted industry, which saw the potential to market ectoine as a novel active component in health care products and cosmetics. In joint efforts of industry and research, a large-scale fermentation procedure has been developed with the halophilic bacterium Halomonas elongata used as a producer strain. The development and application of ectoine-excreting mutants from H. elongata (“leaky” mutants) allow for the annual production of ectoine on a scale of tons. The details of the strain development and fermentation processes will be introduced.

© 2020 Walter de Gruyter GmbH, Berlin/Munich/Boston