3 Positive-Energy Representations of Noncompact Quantum Algebras

Summary
We construct positive-energy representations of noncompact quantum algebras at roots of unity. We give the general setting, and then we consider in detail the examples of the q-deformed anti de Sitter algebra $\mathcal{A}_q = U_q(\mathfrak{so}(3, 2))$ and q-deformed conformal algebra $\mathcal{C}_q = U_q(\mathfrak{su}(2, 2))$. For \mathcal{A}_q we discuss in detail the singleton representations, while for \mathcal{C}_q we discuss in detail the massless representations. When the deformation parameter q is N-th root of unity, all irreducible representations are finite-dimensional. We give the dimensions of these representations and their character formulae. Generically, these dimensions are not classical, except in some special cases, including the deformations of the fundamental irreps of $\mathfrak{so}(3, 2)$ and $\mathfrak{su}(2, 2)$. We follow the papers [165, 212, 225, 231].

3.1 Preliminaries

Let G be a simple connected noncompact Lie group with unitary highest-weight representations [264], and let \mathfrak{g}_0 be its Lie algebra. Thus, \mathfrak{g}_0 is one of the following Lie algebras: $\mathfrak{su}(m, n)$, $\mathfrak{so}(n, 2)$, $\mathfrak{sp}(2n, R)$, $\mathfrak{so}^*(2n)$, $\mathfrak{E}_6(-14)$, $\mathfrak{E}_7(-25)$. We consider q-deformations $U_q(\mathfrak{g}_0)$ constructed by the procedure proposed in [204] and reviewed in Section 1.5. The positive-energy irreps of $U_q(\mathfrak{g}_0)$ are realized as lowest-weight module M of $U_q(\mathfrak{g}_0)$, where \mathfrak{g} is the complexification of \mathfrak{g}_0, together with a hermiticity condition necessary for the construction of a scalar product in M. We take lowest instead of the more often used highest-weight modules since we want the energy to be bounded from below. We use the standard deformation $U_q(\mathfrak{g}_0)$ [251, 360] given in terms of the Chevalley generators X_i^+ and H_i, $i = 1, \ldots, r = \text{rank } \mathfrak{g}$ by the relations (1.19).

A lowest-weight module M^Λ is given by the lowest-weight $\Lambda \in \mathcal{H}^*$ (where \mathcal{H}^* is the dual of \mathcal{H}) and a lowest-weight vector v_0 so that $Xv_0 = 0$ if $X \in \mathcal{H}^-$ and $Hv_0 = \Lambda(H)v_0$ if $H \in \mathcal{H}$. In particular, we use the Verma modules V^Λ which are the lowest-weight modules such that $V^\Lambda = U_q(\mathcal{H})v_0$. Thus the Poincaré–Birkhof–Witt theorem (cf., e. g., Section 2.5.1) tells us that the basis of V^Λ consists of monomial vectors

$$\Psi_{\{k\}} = (Y_{i_1}^+)^{k_{i_1}} \cdots (Y_{i_n}^+)^{k_{i_n}}v_0 = \mathcal{P}_{\{k\}}v_0, \quad k_i \in \mathbb{Z}_+, \quad (3.1)$$

where $Y_i^+ \in \mathcal{H}^+$, $i_1 < i_2 < \ldots < i_n$, in some fixed ordering of the basis. A $U_q(\mathcal{H}_0)$-invariant scalar product in V^Λ is given by:

$$\left(\Psi_{\{k'\}}, \Psi_{\{k\}}\right) = \left(\mathcal{P}_{\{k'\}}v_0, \mathcal{P}_{\{k\}}v_0\right) = \left(v_0, \omega(\mathcal{P}_{\{k'\}}\mathcal{P}_{\{k\}}v_0)\right), \quad (3.2)$$

with $(v_0, v_0) = 1$ and ω is the conjugation which singles out \mathcal{H}_0, which has the property that $\omega(X^+) \in \mathcal{H}^-$ if $X^+ \in \mathcal{H}^+$.
We use the information on Verma modules as given in Chapter 2. Specifically, we recall that when the deformation parameter q is a root of unity, the picture of the representations changes drastically. In this case all Verma modules V^Λ are reducible [198], and all irreducible representations are finite-dimensional [175]. Let q be a primitive N-th root of unity; that is, $q = e^{2\pi i/N}$, where $N \in \mathbb{N}$ and $N \geq 1 + n(G)$, where $n(G)$ is the ratio $(a_L, a_L)/[a_S, a_S]$, where a_L is a long root, and a_S a short root. The maximal dimension of any irreducible representation is equal to d_N for N odd [175]. There are singular vectors for all positive roots [198]. Condition (2.2) also has more content now because if $(\Lambda - \rho)(H_a) = -m \in \mathbb{Z}$, then (2.2) will be fulfilled for all $m + kN_a$, $k \in \mathbb{Z}$, $N_a = N/n(G)$ if $N \in n(G)N$ and a is a long root and $N_a = N$ in all other cases. In particular, there is an infinite series of positive integers m such that (2.2) is true [198]. For identical reasons, there is an infinite number of lowest weights Λ such that (2.2) is satisfied for the same set of positive integers $m = m_a$. The structure of the corresponding finite-dimensional irreps is the same since it is fixed by these positive integers.

Some of the finite-dimensional irreducible representations can be unitary as we show in the examples in the next sections.

We also give an interpretation of the spectrum via character formulae.

3.2 Quantum Anti de Sitter Algebra

3.2.1 Representations

Here we follow mostly [212, 231]. The first example we consider is the quantum anti de Sitter algebra; that is, we take $G_0 = so(3, 2)$ and $G = so(5, \mathbb{C})$. In this case $r = 2$ and the nonzero products between the simple roots are $(\alpha_1, \alpha_1) = 2$, $(\alpha_2, \alpha_2) = 4$, and $(\alpha_1, \alpha_2) = -2$; thus $a_{12} = -2$, $a_{21} = -1$. The non-simple positive roots are $\alpha_3 = \alpha_1 + \alpha_2$ and $\alpha_4 = 2\alpha_1 + \alpha_2$. The Cartan–Weyl basis for the nonsimple roots is given by [198, 576]:

$$X_3^\pm = \pm q^{1/4}(q^{1/2}X_1^+X_2^+ - q^{-1/2}X_2^+X_1^+), \quad X_4^\pm = \pm (X_1^+X_3^+ - X_3^+X_1^+) / [2]_q. \quad (3.3)$$

All commutation relations now follow from the above relations. We mention, in particular:

$$[X_3^+, X_3^-] = [H_3]_q, \quad H_3 = H_1 + 2H_2, \quad [X_4^+, X_4^-] = [H_4]_q^2, \quad H_4 = H_1 + H_2, \quad (3.4)$$

where the Cartan generators H_3, H_4 corresponding to the nonsimple roots α_3, α_4 are chosen as in [242].

We choose the generators of $U_q(so(3, 2))$ as a real form of $U_q(so(5, \mathbb{C}))$ as follows [242]:
\[M_{21} = H_1/2, \quad M_{31} = (X_1^+ + X_1^-)/2, \]
\[M_{32} = i(X_1^+ - X_1^-)/2, \]
\[M_{04} = (H_1 + H_2)/2, \quad M_{30} = i(X_3^+ + X_3^-)/2, \]
\[M_{34} = (X_3^- - X_3^+)/2, \quad (3.5a) \]
\[M_{04} = (H_1 + H_2)/2, \quad M_{30} = i(X_3^+ + X_3^-)/2, \]
\[M_{34} = (X_3^- - X_3^+)/2, \quad (3.5b) \]
\[M_{10} = i(X_4^+ + X_4^- + X_2^+ + X_2^-)/2, \]
\[M_{20} = (X_4^+ - X_4^- - X_2^+ - X_2^-)/2, \quad (3.5c) \]
\[M_{41} = (X_2^+ - X_2^- + X_4^+ - X_4^-)/2, \]
\[M_{42} = (X_2^+ - X_2^- - X_4^+ - X_4^-)/2. \quad (3.5d) \]

Clearly, for \(q = 1 \) the ten generators \(M_{AB} = -M_{BA}, A, B = 0, 1, 2, 3, 4, \) satisfy the \(so(3,2) \) commutation relations (with \(\eta_{AB} = \text{diag}(+ - - +) \)):

\[[M_{AB}, M_{CD}] = i(\eta_{BC}M_{AD} - \eta_{AC}M_{BD} - \eta_{BD}M_{AC} + \eta_{AD}M_{BC}), \quad q = 1. \]

The commutation relations for \(U_q(so(3,2)) \) follow from (3.5) and the commutation relations of \(U_q(so(5, \mathbb{C})) \). The Cartan subalgebras of \(U_q(so(3,2)) \) and \(U_q(so(5, \mathbb{C})) \) are generated by the same generators \(M_{21}, M_{04} \) or \(M_{10}, M_{20} \). Note that the generators in (3.5a) and (3.5b) are compact; the rest are noncompact. In particular, those in (3.5a) generate a \(U_q(su(2)) \) subalgebra, those in (3.5b) a \(U_q(su(1,1)) \) subalgebra.

For \(|q| = 1 \) the generators in (3.5) are preserved by the following antilinear antinvolution \(\omega \) of \(U_q(so(5, \mathbb{C})) \) [231]:

\[\omega(H_j) = H_j, \quad j = 1, 2, \quad \omega(X_1^+) = X_1^-, \quad \omega(X_2^+) = -X_2^-, \quad \omega(X_3^+) = X_3-, \quad k = 2, 3, 4. \quad (3.6) \]

The restriction \(|q| = 1 \) follows from requiring consistency between (3.3) and (3.6), which is necessary since the generators \(X_3^+, X_4^+ \) are given in terms of \(X_1^+, X_2^+ \). Thus in what follows we work with \(|q| = 1 \).

For the four positive roots of the root system of \(so(5, \mathbb{C}) \), one has from (2.2) (cf. [242]):

\[m_1 = -\Lambda(H_1) + 1 = 2s_0 + 1, \quad (3.7a) \]
\[m_2 = -\Lambda(H_2) + 1 = 1 - E_0 - s_0, \quad (3.7b) \]
\[m_3 = -\Lambda(H_3) + 3 = m_1 + 2m_2 = 3 - 2E_0, \quad (3.7c) \]
\[m_4 = -\Lambda(H_4) + 2 = m_1 + m_2 = 2 - E_0 + s_0. \quad (3.7d) \]

where the representations are labelled (as those of \(so(3,2) \)) by the lowest value of the energy \(E_0 \) and by the spin \(s_0 \in \mathbb{Z}_+ \) of the state with this energy.

Let us recall the list of the positive-energy representations of \(so(3,2) \) (cf. [191, 267, 289, 302]):
3.2 Quantum Anti de Sitter Algebra

Rac: \(D(E_0, s_0) = D(1/2, 0) \), Di: \(D(E_0, s_0) = D(1, 1/2) \),
\(D(E_0 > 1/2, s_0 = 0) \), \(D(E_0 > 1, s_0 = 1/2) \),
\(D(E_0 \geq s_0 + 1, s_0 \geq 1) \). (3.8)

The first two are the \textit{singleton representations}, which were first discovered by Dirac in [191], and the last ones for \(E_0 = s_0 + 1 \) correspond to the spin-\(s_0 \) \textit{massless representations} of \(\mathfrak{so}(3,2) \).

Let us consider (3.7) for this list. We note that in all cases \(m_1 \in \mathbb{N} \) (because \(s_0 \in \mathbb{Z}_+ \)) and \(m_2 \notin \mathbb{N} \) (because \(m_2 \leq 1/2 \)). Next, we note that \(m_3 \) is a positive integer only for \(E_0 = 1/2, 1 \), in which case \(m_3 = 2, 1 \), respectively. Similarly, \(m_4 \) is a positive integer only for \(E_0 - s_0 = 1 \), and that integer is \(m_4 = 1 \). Accordingly, we find the following singular vectors of the Verma module over \(U_q(\mathfrak{so}(3,2)) \) [231]:

\[
\begin{align}
\nu_1^a &= (X_1^+)^{2s_0+1}v_0, \quad s_0 \in \mathbb{Z}_+/2, \\
\nu_{31}^a &= ([2s_0]_q X_3^+ - (1 + q)X_2^+ X_1^+)v_0, \quad m_3 = 1, \\
\nu_{32}^a &= ((X_3^+)^2 - q^{1/2}[2]_q X_2^+ X_4^+)v_0, \quad m_3 = 2, \\
\nu_4^a &= ([2s_0]_q [2s_0 - 1]_q X_4^+ + q^{s_0} [1 - 2s_0]_q X_3^+ X_1^+ + X_2^+ (X_1^+)^2) v_0, \quad m_4 = 1.
\end{align}
\] (3.9a, 3.9b, 3.9c, 3.9d)

Note that (3.9b) for \(s_0 = 0 \) and (3.9d) for \(s_0 = 0, 1/2 \) are composite singular vectors being \textit{descendants} of (3.9a). We take the basis of the Verma module (3.1) in terms of the Cartan–Weyl generators as:

\[
\Psi_{\{k\}} = (X_4^+)^{k_4}(X_3^+)^{k_3}(X_2^+)^{k_2}(X_1^+)^{k_1}v_0, \quad k_j \in \mathbb{Z}_+.
\] (3.10)

Further, we concentrate on the \textit{singleton} representations. To obtain the irreducible factor-representations \(L_D \) with ground states denoted by \(|E_0, s_0 \rangle \), we have to impose the following null-state vanishing conditions (following from (3.9)):

Rac: \(\langle X_1^+ |1/2, 0 \rangle = 0 \), \(\langle (X_3^+)^2 - q^{1/2}[2]_q X_2^+ X_4^+ |1/2, 0 \rangle = 0 \); (3.11)

Di: \(\langle X_1^+ |1, 1/2 \rangle = 0 \), \(\langle X_3^+ - (1 + q)X_2^+ X_1^+ |1, 1/2 \rangle = 0 \). (3.12)

(For \(q = 1 \) formulae (3.9), (3.11), and (3.12) were obtained in [242].)

Now we give explicitly the basis of \(L_A \). We consider the monomials as in (3.10), but on the vacuum \(|E_0, s_0 \rangle \). Condition (3.11) means that in (3.10) we have \(k_1 = 0 \) and \(k_3 \leq 1 \), since we replace \((X_3^+)^2 \) by \(X_2^+ X_4^+ \) (one may replace also \(X_2^+ X_4^+ \) by \((X_3^+)^2 \) as in [242]). Similarly, (3.12) means that in (3.10) we have \(k_1 \leq 1 \) and \(k_3 = 0 \), since we replace \(X_3^+ \) by \(X_1^+ X_4^+ \). Thus, we see that the basis of \(L_A \) consists, as in the classical case [242], of the following monomials [231]:
Rac: \((X_n^+)^j(X_2^+)^k\{1/2, 0\}, \quad j, k = 0, 1, \ldots, \quad \epsilon = 0, 1, \quad (3.13)\)

Di: \((X_q^+)^j(X_2^+)^k\{1, 1/2\}, \quad j, k = 0, 1, \ldots, \quad \epsilon = 0, 1. \quad (3.14)\)

Note that each weight has multiplicity one, which was the reason these representations were called singletons [289].

Now we shall calculate the norms of these states. First we calculate some norms valid for any \(D\):

\[
\| (X_2^+)^j(X_1^+)^k | \Lambda \rangle \|^2 = [j]_q! [k]_q! \left(\prod_{\ell=1}^{k} [\Lambda(H_2) - k - 1 + \ell]_q \right) \times \\
\times \prod_{s=1}^{k} [1 - \Lambda(H_1) - s]_q, \quad (3.15a)
\]

\[
\| (X_3^+)^j(X_1^+)^k | \Lambda \rangle \|^2 = [j]_q! [k]_q! \left(\prod_{\ell=1}^{k} [\Lambda(H_3) - 1 + \ell]_q \right) \times \\
\times \prod_{s=1}^{k} [1 - \Lambda(H_1) - s]_q, \quad (3.15b)
\]

\[
\| (X_3^+)^j(X_2^+)^k \{|1/2, 0\} \rangle \|^2 = [j]_q! [k]_q! \left(\prod_{\ell=1}^{k} [\Lambda(H_3) + 2k - 1 + \ell]_q \right) \times \\
\times \prod_{s=1}^{k} [\Lambda(H_2) - 1 + s]_q, \quad (3.15c)
\]

\[
\| (X_q^+)^j(X_2^+)^k(X_1^+)^l | \Lambda \rangle \|^2 = [j]_q! [k]_q! [-\Lambda(H_1)]_q^e \times \\
\times \left(\prod_{\ell=1}^{j} [\Lambda(H_4) - 1 + \varepsilon + \ell]_q \right) \prod_{s=1}^{k} [\Lambda(H_2) - 1 - \varepsilon + s]_q, \quad (3.15d)
\]

\[
\| (X_q^+)^j(X_3^+)^e(X_2^+)^k \{|1/2, 0\} \rangle \|^2 = [j]_q! [k]_q! [\Lambda(H_3) + 2k]_q^e \times \\
\times \left(\prod_{\ell=1}^{j} [\Lambda(H_4) - 1 + \varepsilon + \ell]_q \right) \prod_{s=1}^{k} [\Lambda(H_2) - 1 + s]_q. \quad (3.15e)
\]

In all cases we consider we have \(\Lambda(H_1) = -2s_0\). Thus we get from (3.15a) with \(j = 0\)

\[
\| (X_1^+)^k | E_0, s_0 \rangle \|^2 = [k]_q! \prod_{\ell=1}^{k} [2s_0 + 1 - \ell]_q, \quad (3.16)
\]

which vanishes if \(k \geq 2s_0 + 1 = m_1\); the latter statement is clear also from the null-state condition. In the same way we see that (3.15a,b) vanish for \(k \geq 2s_0 + 1\) and any \(j\). To calculate the other norms we also use \(\Lambda(H_2) = E_0 + s_0\) (then \(\Lambda(H_3) = 2E_0\), \(\Lambda(H_4) = E_0 - s_0\)).
Finally, the norms of the basis states (3.13) and (3.14) are:

\[
\| (X^+_j)^k (X^+_j)^ℓ (X^+_j)^k|1/2, 0\rangle \|^2 = [2]^k q^j ![k] q^2! \left(\prod_{ℓ=1}^{j} [ℓ - 1/2 + \varepsilon] q^2 \right) \times \\
\times \prod_{s=1}^{k} [s - 1/2 + \varepsilon] q^2, \quad (3.17)
\]

\[
\| (X^+_j)^k (X^+_j)^ℓ (X^+_j)^k|1/2, 0\rangle \|^2 = [j] q^2 ![k] q^2! \left(\prod_{ℓ=1}^{j} [ℓ - 1/2 + \varepsilon] q^2 \right) \times \\
\times \prod_{s=1}^{k} [s + 1/2 - \varepsilon] q^2, \quad (3.18)
\]

3.2.2 Roots of Unity Case

In this subsection we consider the case where the deformation parameter is a root of unity, namely, \(q = e^{2\pi i/N} \), \(N = 3, 4, \ldots \)

Let us denote

\[
\tilde{N} = \begin{cases}
N & \text{for } N \text{ odd} \\
N/2 & \text{for } N \text{ even}
\end{cases}
\quad N_j = \begin{cases}
N & \text{for } j = 1, 3 \\
\tilde{N} & \text{for } j = 2, 4.
\end{cases} \quad (3.19)
\]

In this situation independently of the weight \(\Lambda \) there are singular vectors for all positive roots \(\alpha_j \), which are given by: \((X^+_j)^{Nj} v_0, j = 1, 3 \), and \((X^+_j)^{Nj} v_0, j = 2, 4, k = 1, 2, \ldots \) [198]. Thus we have to impose the following vanishing of null states in our representation spaces:

\[
(X^+_j)^N|E_0, m_0\rangle = 0, \quad j = 1, 3, \quad (X^+_j)^{Nj}|E_0, m_0\rangle = 0, \quad j = 2, 4. \quad (3.20)
\]

Taking into account condition (2.2) we see that if \(m_j = (\rho - \Lambda)(H_j) \in \mathbb{Z} \), \(j = 1, 2, 3, 4 \), there would be singular vectors of weights \((n'_j + kN)\alpha_j \), where \(n'_j = \{m_j\}_{N_j}, \{x\}_{p} \) being the smallest positive integer equal to \(x \) (mod \(p \)), and \(k = 0, 1, \ldots \). Analogously, if \(m_j \in 1/2 + \mathbb{Z}, j = 2, 4, \) and \(N \) is odd, there would be singular vectors of weights \((n'_j + kN)\alpha_j \), \(n'_j = \{m_j + N/2\}_{N}, k = 0, 1, \ldots \). In particular, we have to impose:

\[
(X^+_j)^{n'_j}|E_0, m_0\rangle = 0, \quad j = 1, 2. \quad (3.21)
\]

Further our representations will be characterized by the following positive integers:
\[n_1 = [2s_0 + 1]_N = [m_1]_N, \]

\[n_2 = \begin{cases}
[1 - E_0 - s_0]_\tilde{N} = [m_2]_{\tilde{N}}, & \text{if } E_0 + s_0 \in \mathbb{Z}, \\
[1 - E_0 - s_0 + N/2]_N = [m_2 + N/2]_N, & \text{if } E_0 + s_0 \in 1/2 + \mathbb{Z}, \\
\tilde{N}, & \text{otherwise},
\end{cases} \]

Note that \(n_k \leq N_k, k = 1, 2. \)

Let us recall that the finite-dimensional irreducible representations of \(so(5, \mathbb{C}) \) (or of other real form of \(so(5, \mathbb{C}) \) and of the corresponding quantum algebras when \(q \) is not a root of unity) are parametrized by two arbitrary positive integers, say, \(p_1, p_2 \), and the dimension of such a representation is given by:

\[d_{p_1, p_2}^c = \frac{1}{6} p_1 p_2 p_3 p_4, \]

where \(p_3 = p_1 + 2p_2, p_4 = p_1 + p_2. \)

Now for \(N \) odd we divide our representations in classes depending on the values of \(n_3 = n_1 + 2n_2, n_4 = n_1 + n_2 \) and \(n_1, n_2 \):

\[a) n_3, n_4 \leq N, \]

\[b) n_4 < N < n_3 < 2N, \]

\[b') n_4 = N < n_3 \leq 2N, \quad \text{or} \quad n_4 < n_3/2 = N, \]

\[c) n_1 < N < n_3, n_4 < 2N, \]

\[c') n_1 = N < n_3, n_4 \leq 2N, \quad \text{or} \quad n_1 < N < n_4 < n_3 = 2N, \]

\[d) n_2 < N < n_4 < 2N < n_3 < 3N, \]

\[d') n_2 = N < n_4 \leq 2N < n_3 \leq 3N. \]

The same classification is valid for \(U_q(so(5, \mathbb{C})) \), where (3.24a) is the regular case. This is a refinement of the classification of [231], the primed cases being separated out since, together with the regular case, these have the classical dimensions of the finite-dimensional irreps of \(so(5, \mathbb{C}) \); that is, a representation characterized by \(n_1, n_2 \) has dimension \(d_{n_1, n_2}^c \). In particular, in case \(d' \) with \(n_1 = n_2 = N \), we achieve the maximal possible dimension \(N^6 \) of an irrep of \(U_q(so(5, \mathbb{C})) \) (cf. [175]). On the other hand, in the unprimed cases \(b) - d) \), the dimension of a representation characterized by \(n_1, n_2 \) is strictly smaller than \(d_{n_1, n_2}^c \). The representations \(U_q(so(3, 2)) \) inherit all the structure from their \(U_q(so(5, \mathbb{C})) \) counterparts. Thus, the classification of the positive-energy representations of \(U_q(so(3, 2)) \) proceeds as follows.
Let us decompose: \(2s_0 = 2S_0 + r_0N, 2S_0, r_0 \in \mathbb{Z}_+, 2S_0 < N \). Then we have:

\[
n_1 = 2S_0 + 1. \tag{3.25}
\]

Now the formulae for \(n_2 \) depend on the combination \(E_0 + s_0 \).

Suppose first that \(E_0 + s_0 \notin \mathbb{Z}/2 \). Then we have:

\[
n_2 = N, \quad n_3 = 2N + 2S_0 + 1 > 2N, \quad n_4 = N + 2S_0 + 1 > N, \quad \text{odd } N, \tag{3.26}
\]

which is case (3.24d).

Next we consider the case \(E_0 + s_0 \in \mathbb{Z} \). Taking into account the conditions of positive energy (3.8), we see that we have \(E_0 \geq s_0 + 1 \). Thus we set \(E_0 = s_0 + 1 + p + kN \), where \(p = 0, 1, \ldots, N - 1, k \in \mathbb{Z}_+ \). Let us also set \(\kappa = 2S_0 + p \). Note that \(0 \leq \kappa \leq 2N - 2 \). Then we have for \(N \) odd:

\[
n_2 = N - \kappa,
\]

\[
n_3 = 2N - \kappa - p + 1 \begin{cases} \leq N & \text{for } \kappa + p > N, \\ > N & \leq 2N & \text{for } \kappa + p \leq N, \kappa > 0, \\ > 2N & \text{for } \kappa = 0, \end{cases}
\]

\[
n_4 = N - p + 1 \begin{cases} \leq N & \text{for } p > 0, \\ > N & \text{for } p = 0; \end{cases}
\]

\[
\kappa < N, \tag{3.27a}
\]

\[
n_2 = 2N - \kappa,
\]

\[
n_3 = 4N - \kappa - p + 1 \begin{cases} > N & \leq 2N & \text{for } \kappa + p \geq 2N + 1, \\ > 2N & \text{for } \kappa + p \leq 2N, \end{cases}
\]

\[
n_4 = 2N - p + 1 > N, \quad \kappa \geq N. \tag{3.27b}
\]

Thus we have case (3.24a) in (3.27a) when \(\kappa + p \geq N + 1 \) & \(p > 0 \), case (3.24b) in (3.27a) when \(\kappa + p \leq N \) & \(p > 0 \) (\(\Rightarrow \kappa > 0 \)), case (3.24c) in (3.27a) when \(p = 0 \) & \(\kappa > 0 \) and in (3.27b) when \(\kappa + p \geq 2N + 1 \), case (3.24d) in (3.27a) when \(\kappa = 0 \) (\(\Rightarrow p = 0 \)), and in (3.27b) when \(\kappa + p \leq 2N \).

Then we consider the case \(E_0 + s_0 \in 1/2 + \mathbb{Z} \) for \(N \) odd. Taking into account the conditions of positive energy (3.8), we see that we have \(E_0 \geq s_0 + 1/2 \). Thus we set \(E_0 = s_0 + 1/2 + p + kN \), where \(p = 0, 1, \ldots, N - 1, k \in \mathbb{Z}_+ \). As above we set \(\kappa = 2S_0 + p \) \((0 \leq \kappa \leq 2N - 2) \). We also denote \(\tilde{N} = (N + 1)/2 \in \mathbb{N} + 1 \). Then we have:
\[
\begin{align*}
 n_2 &= \hat{N} - \kappa, \\
 n_3 &= N - \kappa - p + 2 \begin{cases}
 \leq N & \text{for } \kappa + p \geq 2, \\
 > N \& \leq 2N & \text{for } \kappa + p \leq 1,
 \end{cases} \\
 n_4 &= \hat{N} - p + 1 < N, \\
 &\quad \kappa < \hat{N}.
\end{align*}
\]

\[(3.28a)\]

\[
\begin{align*}
 n_2 &= N + \hat{N} - \kappa, \\
 n_3 &= 3N - \kappa - p + 2 \begin{cases}
 \leq N & \text{for } \kappa + p \geq 2N + 2, \\
 > N \& \leq 2N & \text{for } N + 2 \leq \kappa + p \leq 2N + 1, \\
 > 2N & \text{for } \kappa + p \leq \hat{N} + 1,
 \end{cases} \\
 n_4 &= N + \hat{N} - p + 1 \begin{cases}
 \leq N & \text{for } p > \hat{N}, \\
 > N & \text{for } p \leq \hat{N},
 \end{cases} \\
 &\quad \hat{N} \leq \kappa \leq N + \hat{N} \quad (3.28b)
\end{align*}
\]

\[
\begin{align*}
 n_2 &= 2N + \hat{N} - \kappa, \\
 n_3 &= 5N - \kappa - p + 2 > 2N, \\
 n_4 &= 2N + \hat{N} - p + 1 > N, \\
 &\quad \kappa \geq N + \hat{N} \quad (3.28c)
\end{align*}
\]

Thus we have case (3.24a) in (3.28a) when \(\kappa + p \geq 2\) and in (3.28b) when \(\kappa + p \geq 2N + 2\) \(\Rightarrow p > \hat{N}\), case (3.24b) in (3.28a) when \(\kappa + p \leq 1\) and in (3.28b) when \(p > \hat{N} \& \kappa + p \leq 2N + 1\) \(\Rightarrow \kappa + p \geq N + 2\), case (3.24c) in (3.28b) when \(p \leq \hat{N} \& \kappa + p \geq N + 2\) \(\Rightarrow \kappa + p \leq 2N + 1\), and case (3.24d) in (3.28b) when \(\kappa + p \leq N + 1\) \(\Rightarrow p \leq \hat{N}\) and in (3.28c).

After the above analysis it remains to mention that the singleton irreps, \((E_0, s_0) = (1/2, 0), (1, 1/2)\), belong to case (3.24b) (cf. (3.28a) with \(\kappa = 0, 1, p = 0\)), while the massless irreps, \(E_0 = s_0 + 1\), belong to case (3.24c).

This completes the classification of the positive-energy representations of \(U_q(so(3, 2))\) at odd roots of 1.

Further we treat in detail the singleton cases. In the case of the \(Rac\) besides (3.11) a new vanishing condition is:

\[
(X_2^+)^{n_2} |1/2, 0\rangle = 0, \quad n_2 = [(N + 1)/2]_{\text{int}},
\]

where \([x]_{\text{int}}\) is the biggest integer smaller or equal to \(x\); note that this condition is (3.20) for \(N\) even and (3.21) for \(N\) odd. Further using (1.21) we find that the following states from (3.13) have positive norms [231]:

\[
\| (X_2^-)^j (X_3^-)^k (X_2^+)^{n_2} |1/2, 0\rangle \|^2 > 0, \quad \text{iff} \quad
\begin{cases}
 j, k \leq (N - 1 - 2e)/2 & \text{for } N \text{ odd} \\
 j, k \leq (N - 2)/2 & \text{for } N \text{ even}
\end{cases}
\]

(3.30)
Due to factors in (3.17): $[j - 1/2 + \epsilon]_q^2$, $[k - 1/2 + \epsilon]_q^2$ for N odd, and $[j]_q^2$, $[k]_q^2$ for N even; all other states from (3.13) have zero norm and decouple from the irrep. Thus we calculate the dimension of the Rac irrep by counting the states in (3.30), which are $(N + 1 - 2\epsilon)^2/4$ for $\epsilon = 0, 1$ and N odd, and $N^2/4$ for $\epsilon = 0, 1$, and N even. Thus we get [231]:

$$
\dim \text{Rac} = \begin{cases}
\frac{N^2 + 1}{2}, & \text{for } N \text{ odd} \\
\frac{N^2}{2}, & \text{for } N \text{ even}
\end{cases}
\quad (3.31)
$$

In the case of the Di besides (3.12) the new vanishing condition is:

$$(X_2^+)^{n_2}|1, 1/2\rangle = 0, \quad n_2 = \lfloor N/2\rfloor_{\text{int}},
\quad (3.32)
$$

again this is (3.20) for N even and (3.21) for N odd. Then we find from (3.18) that the following states have positive norms [231]:

$$
\| (X_1^+)^j (X_2^+)^k |1, 1/2\rangle \|^2 > 0, \quad \text{iff} \quad \begin{cases}
j \leq (N - 1 - 2\epsilon)/2 & \text{and} \\
k \leq (N - 3 + 2\epsilon)/2 & \text{for } N \text{ odd} \\
j, k \leq (N - 2)/2 & \text{for } N \text{ even}
\end{cases}
\quad (3.33)
$$

and the counting of states gives [231]:

$$
\dim \text{Di} = \begin{cases}
\frac{N^2 - 1}{2}, & \text{for } N \text{ odd} \\
\frac{N^2}{2}, & \text{for } N \text{ even}
\end{cases}
\quad (3.34)
$$

Thus the dimension of a singleton irrep for fixed N is strictly smaller than the minimal dimension of a (semi-) periodic irrep of $U_q(\mathfrak{so}(5, \mathbb{C}))$, which is N^2 [177]. The interesting thing is that the sum of the dimensions of the two singletons is exactly N^2. Thus we are led to the conjecture that passing from a minimal (semi-) periodic irrep of $U_q(\mathfrak{so}(5, \mathbb{C}))$ to a lowest-weight module of $U_q(\mathfrak{so}(5, \mathbb{C}))$ (by setting the corresponding Casimir values to zero), we obtain a reducible representation which is the direct sum of two irreps. The latter irreps when restricted to $U_q(\mathfrak{so}(3, 2))$ are the two singleton representations.

3.2.3 Character Formulae

When q is not a nontrivial root of 1, the spectrum of the singletons can be represented by the following character formulae (containing the same information as (3.13) and (3.14)):

$$
\text{ch} L_{\text{Rac}} = e(\Lambda)(1 + t_3) \sum_{j=0}^{\infty} t_j^2 \sum_{k=0}^{\infty} t_k^2,
\quad (3.35)
$$
\[ch \ L_{Di} = e(\Lambda)(1 + t_4) \sum_{j=0}^{\infty} t_4^j \sum_{k=0}^{\infty} t_2^k, \]
(3.36)

where \(t_3 = e(\alpha_1 + \alpha_2) = t_1 t_2, \) \(t_4 = e(2\alpha_1 + \alpha_2) = t_1^2 t_2. \) (For \(q = 1 \) these formulae were given in a slightly different, but equivalent, form in \([242]\).) Now we note that the character formula for the Verma module with the same lowest weight here is:

\[ch \ V^\Lambda = e(\Lambda)/(1 - t_1)(1 - t_2)(1 - t_3)(1 - t_4). \]
(3.37)

Then we can rewrite the character formulae (3.35) and (3.36) as follows \([242]\):

\[ch \ L_{Rac} = ch \ V^\Lambda(1 - t_1 - t_2 + t_3), \]
(3.38)
\[ch \ L_{Di} = ch \ V^\Lambda(1 - t_1^2 - t_1 t_2 + t_2^2). \]
(3.39)

These formulae represent alternating sign summations over part of the Weyl group of \(so(5, \mathbb{C}) \), which was called reduced Weyl group in \([196]\]).

Next we note that the spectrum given in (3.30) and (3.33) can be represented by the following character formulae for \(N \) odd:

\[ch \ L_{Rac} = e(\Lambda) \left(\sum_{j=0}^{(N-1)/2} t_4^j \sum_{k=0}^{(N-1)/2} t_2^k + t_3 \sum_{j=0}^{(N-3)/2} t_4^j \sum_{k=0}^{(N-3)/2} t_2^k \right), \]
(3.40)
\[ch \ L_{Di} = e(\Lambda) \left(\sum_{j=0}^{(N-1)/2} t_4^j \sum_{k=0}^{(N-3)/2} t_2^k + t_1 \sum_{j=0}^{(N-3)/2} t_4^j \sum_{k=0}^{(N-1)/2} t_2^k \right). \]
(3.41)

Let us denote by \(L_{n_1,n_2}^c \) the finite-dimensional irreps of \(so(5, \mathbb{C}) \). The corresponding character formula, which is the classical Weyl character formula, is:

\[ch \ L_{n_1,n_2}^c = ch \ V^\Lambda(1 - t_1^{n_1} - t_2^{n_2} - t_3^{n_3} - t_4^{n_4} + t_1^{n_1} t_2^{n_2} + t_3^{n_3} t_4^{n_4} + t_1^{n_1} t_2^{n_2} t_3^{n_3} + t_1^{n_1} t_2^{n_2}), \]
(3.42)

where the eight terms represent (alternating sign) summation over the (eight element) Weyl group of \(so(5, \mathbb{C}) \).

As we mentioned, the dimension of a unitary irrep of \(U_q(so(3, 2)) \) characterized by \(n_1, n_2 \) is generically smaller than \(d_{n_1,n_2}^c \). In particular, for the Rac when \(N \) is odd we have \((n_1, n_2) = (1, (N + 1)/2) \). We have that \(d_{n_1,(N+1)/2}^c = (N + 1)(N + 2)(N + 3)/24 \geq dim_{Rac} = (N^2 + 1)/2 \). It is easy to notice that \(dim_{Rac} \) may be represented as the difference of two dimensions:

\[dim_{Rac} = d_{1,(N+1)/2}^c - d_{1,(N-3)/2}^c \]
(3.43)

where the subtracted term corresponds to the weight \(\Lambda' = \Lambda + 2\alpha_3 \) with characterizing integers given by: \(n_j' = (\rho - \Lambda')(H_j) = n_j - 2\alpha_3(H_j) \); that is, \((n_1', n_2') = (n_1 - 2, n_2 - 2) \). Correspondingly, the character formula for odd \(N \) is given by (cf. (3.40)):
\[ch L_{\text{Rac}} = ch L_{1,(N+1)/2}^c - ch L_{1,(N-3)/2}^c = ch V^\Lambda (P_{1,(N+1)/2} - t_3^2 P_{1,(N-3)/2}), \]
\[(3.44) \]

where we have introduced the notation: \(ch L_{n_1,n_2}^c = ch V_D P_{n_1,n_2}^r. \)

Note that the subtraction term vanishes only for \(N = 3 \), which is the only case when the quantum Rac dimension coincides with a classical dimension, here of one of the fundamental irreps of \(so(3, 2) \) with \(d^c = 5 \).

Analogously, for the \(D_i \) when \(N \) is odd we have \((n_1, n_2) = (2, (N - 1)/2) \). Here we have that \(d^c_{2,(N-1)/2} = (N^2 - 1)(N + 3)/12 \geq dim D_i = (N^2 - 1)/2, \) and equality is possible only for \(N = 3 \); then the dimension is of the other fundamental irrep, \(d^c = 4 \). Here we have to subtract the character \(ch L_{A'}^c \) with \(A' = \Lambda + \alpha_3 \), and \((n_1', n_2') = (n_1, n_2 - 1) \). We have for odd \(N \):

\[ch L_{D_i} = ch L_{2,(N-1)/2}^c - ch L_{2,(N-3)/2}^c = ch V^\Lambda (P_{2,(N-1)/2} - t_3 P_{2,(N-3)/2}), \]
\[(3.45) \]

\[\text{dim}_{D_i} = d^c_{2,(N-1)/2} - d^c_{2,(N-3)/2}. \]
\[(3.46) \]

3.3 Conformal Quantum Algebra

3.3.1 Generic Case

The other example that we consider is the conformal algebra; that is, we take \(\mathcal{G}_0 = su(2, 2) \) and \(\mathcal{G} = sl(4, \mathbb{C}) \). In this case \(r = 3 \), and the nonzero products between the simple roots are \((\alpha_1, \alpha_j) = 2, j = 1, 2, 3 \) and \((\alpha_1, \alpha_2) = (\alpha_2, \alpha_3) = -1 \). The nonsimple positive roots are \(\alpha_{12} = \alpha_1 + \alpha_2, \alpha_{23} = \alpha_2 + \alpha_3, \alpha_{13} = \alpha_1 + \alpha_2 + \alpha_3 \). The Cartan–Weyl basis for the nonsimple roots is given by [202, 360]:

\[X_{jk}^\pm = \pm q^{\mp 1/4} (q^{1/4} X_k^+ X_j^+ - q^{-1/4} X_k^+ X_j^-), (jk) = (12), (23), \]
\[X_{13}^\pm = \pm q^{\mp 1/4} (q^{1/4} X_1^+ X_{23}^+ - q^{-1/4} X_{23}^+ X_1^-) = \pm q^{\mp 1/4} (q^{1/4} X_{12}^+ X_3^- - q^{-1/4} X_3^+ X_{12}^-). \]
\[(3.47) \]

To single out \(U_q(sl(4, \mathbb{C})) \) we use the following antilinear anti-involution [165]:

\[\omega(H) = H, \forall H \in \mathcal{H}, \quad \omega(X_{jk}^\pm) = \begin{cases} X_{jk}^\mp, & (jk) = (11), (33), \\ -X_{jk}^\pm, & \text{otherwise}. \end{cases} \]
\[(3.48) \]

For the six positive roots of the root system of \(sl(4, \mathbb{C}) \) one has from (2.2) that the Verma module \(V^\Lambda \) is reducible when:
where we use the classical labelling of the $su(2,2)$ representations: $2j_1, 2j_2$ are non-negative integers fixing finite-dimensional irreducible representations of the Lorentz subalgebra, and $d > 0$ is the energy (or conformal dimension). First we note that m_1 and m_3 are positive, since $2j_1$ and $2j_2$ are non-negative integers. The corresponding singular vectors are:

$$v_1 = \left(X_1^+\right)^{2j_1+1}v_0, \quad v_3 = \left(X_3^+\right)^{2j_2+1}v_0,$$

and these are present for all representations we discuss. Next, it is clear that depending on the value of d there may be other singular vectors. Since we are interested in the positive-energy irreps, we recall the list of these representations for $su(2,2)$ [449]:

1) $d > j_1 + j_2 + 2, \quad j_1j_2 \neq 0,$
2) $d = j_1 + j_2 + 2, \quad j_1j_2 \neq 0,$
3) $d > j_1 + j_2 + 1, \quad j_1j_2 = 0,$
4) $d = j_1 + j_2 + 1, \quad j_1j_2 = 0,$

(omitting the one-dimensional representation with $d = j_1 = j_2 = 0$). In case 1) there are no additional singular vectors. If $d = j_1 + j_2 + 2$, which is case 2) and is also possible in case 3), then $m_{13} = 1$, and there is an additional singular vector:

$$v_{13}^{(1)} = \left(2j_1\right)\left(2j_2\right)X_1^+X_2^+X_3^+ - \left(2j_1\right)\left(2j_2 + 1\right)X_1^+X_2^+X_3^+ - 2j_2X_3^+X_2^+X_1^+ - \left(2j_1 + 1\right)\left(2j_2 + 1\right)X_1^+X_2^+X_3^+ \right) v_0.$$

Further, we concentrate on case 4), that is, to the massless representations of $so(4,2)$ [165, 225, 449] for which $d = j_1 + j_2 + 1 \geq 1, j_1j_2 = 0$. For definiteness we choose first $j_2 = 0$. Then we see that in the case $j_1 \neq 0$, we have a singular vector corresponding to $m_{12} = 1$ [165, 225]:

$$v_{12} = \left(2j_1\right)X_{12}^+ - q^{ij}X_i^+X_j^+ v_0, \quad d = j_1 + 1, j_2 = 0, \quad m_{12} = 1,$$

and another one which corresponds to $m_{13} = 2$ [165, 225], which, however, is a composite one and is not relevant. When $j_1 = 0$ there is still another composite singular vector
corresponding to \(m_{23} = 1 \) [165, 225]. Furthermore, for \(j_1 = 0 \) the vector \(v_{12} = X_2^+X_1^+v_0 \) is also composite. Next we factor all invariant submodules built on these singular vectors. However, this factor representation is still reducible since it has an additional singular vector [225]:

\[
v_f = \left(X_{13}^+X_2^+ - q^{-1/2}X_{12}^+X_{23}^+ \right) \left| \bar{0} \right>,
\]

where \(\left| \bar{0} \right> \) denotes the ground-state vector of this factor representation. [This is actually a subsingular vector of the Verma module \(V^\Lambda \) (cf. [215]).] Factoring out the submodule built on \(v_f \), we obtain the irreducible lowest-weight representation \(L_\Lambda \) whose vacuum vector \(\left| \bar{0} \right> \) obeys [225]:

\[
\begin{align*}
\left(X_1^+ \right)^{2j_1+1} \left| \bar{0} \right> &= 0, \\
X_1^+ \left| \bar{0} \right> &= 0,
\end{align*}
\]

\[
\begin{align*}
\left([2j_1]X_{12}^+ - q^jX_2^+X_1^+ \right) \left| \bar{0} \right> &= 0, \\
\left(X_{13}^+X_2^+ - q^{-1/2}X_{12}^+X_{23}^+ \right) \left| \bar{0} \right> &= 0.
\end{align*}
\]

Now we can give explicitly the basis of \(L_\Lambda \). We consider the monomials as in (3.1), but on the vacuum \(\left| \bar{0} \right> \). Taking into account all vanishing conditions we see that the basis of \(L_\Lambda \) consists of the following monomials [225]:

\[
\begin{align*}
\Phi_{k,\ell,n}^1 &= (X_{13}^+)^k(X_{12}^+)\ell(X_2^+)^n \left| \bar{0} \right>, & k, \ell, n &\in \mathbb{Z}_+, \\
\Phi_{k,\ell,n}^2 &= (X_{13}^+)^k(X_{23}^+)\ell(X_2^+)^n \left| \bar{0} \right>, & k, n &\in \mathbb{Z}_+, \ell \in \mathbb{N}, \\
\Phi_{k,\ell,n}^3 &= (X_{13}^+)^k(X_{12}^+)\ell(X_1^+)^n \left| \bar{0} \right>, & k, \ell, n &\in \mathbb{Z}_+, 1 \leq n \leq 2j_1
\end{align*}
\]

the third case being absent for \(j_1 = 0 \). We note that the different vectors in (3.56) have different weights. Thus each weight has multiplicity one and is represented by a single vector just as the singletons of \(so(3, 2) \) (cf. the previous section).

The norms squared of the basis vectors \(\| \Phi_{k,\ell,n}^a \|^2 = \langle \Phi_{k,\ell,n}^a | \Phi_{k,\ell,n}^a \rangle \) are explicitly given by [225]:

\[
\begin{align*}
\| \Phi_{k,\ell,n}^1 \|^2 &= [k]_q!\langle k + \ell \rangle_q! \langle \ell + n \rangle_q!\langle n + 2j_1 \rangle_q!/[2j_1]_q!
\end{align*}
\]

\[
\begin{align*}
\| \Phi_{k,\ell,n}^2 \|^2 &= [k]_q!\langle k + \ell \rangle_q! \langle \ell + n + 2j_1 \rangle_q!\langle n \rangle_q!/[2j_1]_q!\langle 2j_1 \rangle_q!
\end{align*}
\]

\[
\begin{align*}
\| \Phi_{k,\ell,n}^3 \|^2 &= [k]_q!\langle k + \ell + n \rangle_q! \langle \ell \rangle_q!\langle 2j_1 \rangle_q!/\langle 2j_1 - n \rangle_q!.
\end{align*}
\]

When \(q \) is not a root of unity these norms can have both signs. They are positive only for \(q = 1 \), which is the well-known classical case of \(su(2, 2) \) [449]. Note, however, that such a basis is new also for the algebra \(su(2, 2) \). Unitarity can be achieved also when \(q \) is a nontrivial root of unity, which case we consider in the next subsection.
3.3.2 Roots of 1 Case

Let us now turn to the case of the deformation parameter \(q \) being a nontrivial root of unity, namely, \(q = e^{2\pi i/N} \), \(N = 2, 3, \ldots \).

Independently of the weight \(\Lambda \) there are singular vectors for all positive roots \(\alpha \), which are given by: \((X^{\alpha}_+)^{kN}v_0, k = 1, 2, \ldots [202]\). Thus we have to impose the following vanishing of null states in our representation spaces:

\[
(X^{\alpha}_+)^{kN}|\rangle = 0. \quad (3.58)
\]

Taking into account condition (2.2) we see that if \(m_\alpha = (\rho - \Lambda)(H_\alpha) \in \mathbb{Z} \), there would be singular vectors of weights \((|m_\alpha|_N + kN)\alpha\), where \(|x|_p\) is the smallest positive integer equal to \(x \) (mod \(p \)), and \(k = 0, 1, \ldots \). In particular, we have to impose:

\[
(X^{\alpha}_+)^{(mj/N)}|\rangle = 0, \quad j = 1, 2, 3. \quad (3.59)
\]

Further our representations will be characterized by the following positive integers:

\[
\begin{align*}
n_1 &= |2j_1 + 1|_N = |m_1|_N \\
n_2 &= \begin{cases}
-\frac{d}{N} - j_1 - j_2 + 1|_N = |m_2|_N, & \text{if } d + j_1 + j_2 \in \mathbb{Z}, \\
N, & \text{if } d + j_1 + j_2 \notin \mathbb{Z},
\end{cases} \\
n_3 &= |2j_2 + 1|_N = |m_3|_N.
\end{align*}
\]

(3.60)

Note that \(n_k \leq N, k = 1, 2, 3 \).

Let us recall that the finite-dimensional irreducible representations of \(sl(4, \mathbb{C}) \) (or of \(su(2, 2) \), of \(su(4) \), or of any other real form of \(sl(4, \mathbb{C}) \) and of the corresponding quantum algebras when \(q \) is not a root of unity) are parametrized by three arbitrary positive integers \(p_1, p_2, p_3 \), and the dimension of such a representation is given by:

\[
d^p_{p_1,p_2,p_3} = \frac{1}{12}p_1p_2p_3p_{12}p_{23}p_{13},
\]

(3.61)

where \(p_{12} = p_1 + p_2, p_{23} = p_2 + p_3, p_{13} = p_1 + p_2 + p_3 \).

Now the representations are divided into classes [165] depending on the values of \(n_{12} = n_1 + n_2, n_{23} = n_2 + n_3, n_{13} = n_1 + n_2 + n_3 \) and \(n_k \):

a) \(n_k \leq N \), \hspace{1cm} (3.62a)

b) \(n_{12}, n_{23} < N < n_{13} \leq 2N \), \hspace{1cm} (3.62b)

\(b' \) \(n_{12} < n_{23} = N < n_{13} \leq 2N \), or \(n_{12} \rightarrow n_{23} \), \hspace{1cm} (3.62b')

c) \(n_{12} \leq N < n_{23}, n_{13} \leq 2N \), \hspace{1cm} (3.62c)

\(c' \) \(n_{12} \leq N < n_{23}, n_{13} \leq 2N \), \hspace{1cm} (3.62c')
\(d) \ n_{23} \leq N < n_{12}, \ n_{13} \leq 2N, \quad n_1 < N, \quad (3.62d)\)

\(d') \ n_{23} \leq N < n_{12}, \ n_{13} \leq 2N, \quad n_1 = N, \quad (3.62d')\)

\(e) \ n < n_{12}, \ n_{23}, \ n_{13} \leq 2N, \quad n_2 + n_{13} < 3N, \quad (3.62e)\)

\(e') \ N < n_{12}, \ n_{23} < 2N, \quad n_2 = n_{13}/2 = N, \quad (3.62e')\)

\(f) \ n < n_{12}, \ n_{23} < 2N < n_{13} < 3N, \quad (3.62f)\)

\(f') \ n_1 = n_2 = N, \quad \text{or} \quad n_1 = n_3 = N, \quad \text{or} \quad n_2 = n_3 = N. \quad (3.62f')\)

The same classification is valid for \(U_q(sl(4, \mathbb{C}))\), where case (3.62a) is the so-called regular case. This is a refinement of the classification of [165], the primed cases being separated out since together with the regular case these have the classical dimensions of the finite-dimensional irreps of \(sl(4, \mathbb{C})\); that is, a representation characterized by \(n_1, n_2, n_3\) has dimension \(d^{(c)}_{n_1,n_2,n_3}\). In particular, in case \(f')\) with \(n_1 = n_2 = n_3 = N\) we achieve the maximal possible dimension \(N^6\) of an irrep of \(U_q(sl(4, \mathbb{C}))\) (cf. (2.113) and [175]). On the other hand, in the unprimed cases \(b) - f)\), the dimension of a representation characterized by \(n_1, n_2, n_3\) is strictly smaller than \(d^{(c)}_{n_1,n_2,n_3}\).

The representations \(U_q(sl(2, \mathbb{C}))\) inherit all the structure from their \(U_q(sl(4, \mathbb{C}))\) counterparts. Thus, the classification of the positive-energy representations of \(U_q(sl(2, \mathbb{C}))\) proceeds as follows.

Let us decompose: \(2j_k = 2f_k + r_k N, \quad 2j_k, r_k \in \mathbb{Z}_+, \quad 2j_k < N, \quad k = 1, 2\). Then we have:

\[n_1 = 2f_1 + 1, \quad n_3 = 2f_2 + 1. \quad (3.62)\]

Let us consider now the conditions of positive energy (3.51). We see that in cases 1) and 3) we have to distinguish whether \(d + j_1 + j_2\) is integer or not. If \(d + j_1 + j_2 \notin \mathbb{N}\) then \(n_2 = N, \ n_{12} = N + 2f_1 + 1 > N, \ n_{23} = N + 2f_2 + 1 > N, \ n_{13} = N + 2f_1 + 2f_2 + 2 > N.\) Thus, depending on \(n_{13}\), the possible cases are (3.62e,f).

Consider now the cases 1) and 3) of (3.51) with \(d = j_1 + j_2 + 3\) and we set \(d = p + j_1 + j_2 + 3 + kN, \quad \text{where} \quad p = 0, 1, \ldots, N - 1, \quad k \in \mathbb{Z}_+.\) Let us also set \(\kappa = 2f_1 + 2f_2 + 2 + p.\) Note that \(2 \leq \kappa \leq 3N - 1.\) Then we have:

\[n_2 = N - \kappa, \ n_{12} = N - 2f_2 - 1 - p < N, \quad (3.63a)\]

\[n_{23} = N - 2f_1 - 1 - p < N, \ n_{13} = N - p \leq N, \quad (3.63a)\]

\[\kappa < N \quad (3.63a)\]

\[n_2 = 2N - \kappa, \ n_{12} = 2N - 2f_2 - 1 - p, \quad (3.63b)\]

\[n_{23} = 2N - 2f_1 - 1 - p, \ n_{13} = 2N - p \leq 2N, \quad (3.63b)\]

\[N \leq \kappa < 2N \quad (3.63b)\]

\[n_2 = 3N - \kappa, \ n_{12} = 3N - 2f_2 - 1 - p > N, \quad (3.63c)\]

\[n_{23} = 3N - 2f_1 - 1 - p > N, \ n_{13} = 3N - p > 2N, \quad (3.63c)\]

\[2N \leq \kappa < 3N \quad (3.63c)\]
Thus, all cases of (3.62) are possible: we have case (3.62a) in (3.63a) and (3.62f,f') in (3.63c), while (3.63b) contains all cases (3.62b,b',e,e'), since both n_{12}, n_{23} can be bigger or smaller than N.

We pass now to case 2) of (3.51), \(d = j_1 + j_2 + 2, j_1 j_2 \neq 0 \), setting $\kappa' = 2J_1 + 2J_2 + 1$. Note that $1 \leq \kappa' \leq 2N - 1$. Then we have:

\[
\begin{align*}
 n_2 &= N - \kappa', n_{12} = N - 2J_2 \leq N, \\
 n_{23} &= N - 2J_1 \leq N, n_{13} = N + 1 > N, \\
 \kappa' &< N \\
 n_2 &= 2N - \kappa', n_{12} = 2N - 2J_2 > N, \\
 n_{23} &= 2N - 2J_1 > N, n_{13} = 2N + 1 > 2N, \\
 N &\leq \kappa' < 2N
\end{align*}
\] (3.64a)

Thus, we have cases (3.62b,b') in (3.64a) and (3.62f,f') in (3.64b).

Finally we consider the massless case 4) of (3.51) \(d = j_1 + j_2 + 1, j_1 j_2 = 0 = J_1 J_2 \). We have:

\[
\begin{align*}
 n_2 &= N - 2J_1 - 2J_2, \\
 n_{12} &= N + 1 - 2J_2 \begin{cases} \leq N & \text{for } J_2 \neq 0, (J_1 = 0) \\ > N & \text{for } J_2 = 0 \end{cases} \\
 n_{23} &= N + 1 - 2J_1 \begin{cases} \leq N & \text{for } J_1 \neq 0, (J_2 = 0) \\ > N & \text{for } J_1 = 0 \end{cases} \\
 N < n_{13} &= N + 2 \leq 2N.
\end{align*}
\] (3.65)

Thus, we have case (3.62c) if $0 < J_2 < (N - 1)/2$, case (3.62c') if $J_2 = (N - 1)/2$, case (3.62d) if $0 < J_1 < (N - 1)/2$, case (3.62d') if $J_1 = (N - 1)/2$, case (3.62e) if $J_1 = J_2 = 0$ and $N > 2$. case (3.62e') if $J_1 = J_2 = 0$ and $N = 2$.

This completes the classification of the positive-energy representations of $U_q(su(2,2))$ at roots of 1.

3.3.3 Massless Case

Further we treat in detail the massless case at roots of 1. Since $j_1 j_2 = 0$, let us choose for definiteness $J_2 = 0$. The additional vanishing conditions (3.59) besides (3.55) and (3.58) are:

\[
\begin{align*}
 (X_1^+)^{n_1} |0\rangle &= 0, & \text{if } & n_1 < 2j_1 + 1, N, \\
 (X_2^+)^{N-2j_1} |1\rangle &= 0, & \text{if } & J_1 > 0.
\end{align*}
\] (3.66a) (3.66b)
To obtain the dimension $d(N, J_1)$ of these representations we first note that the norms given in (3.57) can be positive only in the following range of j_1 [165], [225]:

$$2rN \leq 2j_1 \leq (2r + 1)N - 1, \quad \forall r \in \mathbb{Z}^+;$$

that is, in terms of the decomposition $2j_1 = 2J_1 + r_1N$ we consider only $r_1 = 2r \in 2\mathbb{Z}^+$.

For fixed j_1 in the above range, the basis of the massless unitary irreducible representation is given by [225]:

$$\Phi^1_{k,\ell,n}, \quad k,\ell,n \in \mathbb{Z}^+, \quad k+\ell+n \leq N-1,$n \leq N-2J_1-1,$$

$$\Phi^2_{k,\ell,n}, \quad k,n \in \mathbb{Z}^+, \quad \ell \in \mathbb{N}, \quad k+\ell \leq N-1,$$n \leq N-2J_1-1,$$

$$\Phi^3_{k,\ell,n}, \quad k,\ell,n \in \mathbb{Z}^+, \quad k+\ell+n \leq N-1,$1 \leq n \leq 2J_1.$$ (3.68)

The norms of these vectors are given by (3.57) with j_1 replaced by J_1 and are strictly positive. Now we can find that the number of states in (3.68a), (3.68b) and (3.68c), respectively, is [225]:

$$\frac{1}{6}(N-2J_1)(2N^2 + N(4J_1 + 3) + 1 - 4J_1^2),$$
$$\frac{1}{6}(N-2J_1)(N-2J_1-1)(2N + 2J_1 - 1),$$
$$\frac{1}{3}J_1(3N^2 - 6NJ_1 - 1 + 4J_1^2).$$

The sum of these three numbers gives the dimension of the massless irreps (cf. [165],[225]):

$$d(N, J_1) = \frac{1}{3} \left[2N^3 - N(12J_1^2 - 1) + 3J_1(4J_1^2 - 1) \right].$$

(3.70)

We recall that in the classical case the massless unitary representations are infinite-dimensional. However, we may compare our representations with the undeformed non-unitary finite-dimensional representations which have the same quantum numbers $(n_1, n_2, n_3) = (2J_1 + 1, N - 2J_1, 1)$. We note that the dimension of the former is generically smaller than the dimension of the latter, which is given by:

$$d_{2J_1+1,N-2J_1,1}^c = \frac{1}{12} (2J_1 + 1)(N - 2J_1)(N + 1)(N - 2J_1)(N + 2),$$

(3.71)
except when \(N = 2, J_1 = 0 \), and then \(d(2, 0) = d^e = 6 \), or \(N = 2J_1 + 1, J_1 > 0 \), and then:

\[
d_0 \equiv d(2J_1 + 1, J_1) = d^e = \frac{1}{3} (J_1 + 1)(2J_1 + 1)(2J_1 + 3) = \frac{1}{6} N(N + 1)(N + 2).
\] (3.72)

The irreps for \(N = 2 \) with \(J_1 = 0, \frac{1}{2} \) are deformations of two of the three fundamental representations of \(su(2, 2) \) with dimensions six and four, respectively, [165].

Finally, we note that one considers the remaining massless representations with \(j_1 = 0 \) and \(j_2 \neq 0 \) in the same way. Thus, in the dimension formulae one has to exchange all subscripts \(1 \rightarrow 3 \). Also one may introduce the helicity \(h = j_1 - j_2 \), then all the formulae above may be written in terms of \(|h| \). Thus, for the exceptional case \(N = 2|h| + 1, h \neq 0 \), we have (cf. (3.72)) [165]:

\[
d_0 = \frac{1}{3} (|h| + 1)(2|h| + 1)(2|h| + 3) = \frac{1}{6} N(N + 1)(N + 2).
\] (3.73)

In particular, for \(N = 2, J_2 = 1/2 \) one obtains a deformation of the third fundamental representation of \(su(2, 2) \) with dimension four [165].

Thus the maximal possible dimension of a massless irrep for fixed \(N \) is \(d_0 \) for \(N > 2 \) and six for \(N = 2 \). Note that this maximal dimension is strictly smaller than the minimal dimension of a (semi-) periodic irrep of \(U_q(sl(4, \mathbb{C})) \), which is \(N^3 \) [177].

3.3.4 Character Formulae

It is easy to see that the spectrum given in (3.56) can be represented by the following character formula [225]:

\[
ch L = e(\Lambda) \left(\sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \sum_{n=0}^{\infty} t_{13}^k t_{12}^\ell t_2^n + \right.
\]

\[
+ \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \sum_{n=0}^{\infty} t_{13}^k t_{23}^\ell t_2^n + \right.
\]

\[
+ \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \sum_{n=1}^{\infty} t_{13}^k t_{12}^\ell t_1^n \right)
\] (3.74)

where \(t_{12} = e(a_{12}) = t_1 t_2 \), \(t_{23} = e(a_{23}) = t_2 t_3 \), \(t_{13} = e(a_{13}) = t_1 t_3 \). Next we note that the character formula for the Verma module with the same lowest weight here is:

\[
ch V^\Lambda = e(\Lambda)/(1-t_1)(1-t_2)(1-t_3)(1-t_{12})(1-t_{23})(1-t_{13}).
\] (3.75)

Now we can rewrite the character formula (3.74) as follows [225]:

\[
ch L_\Lambda = ch V^\Lambda Q(t_1, t_2, t_3) =
\]

\[
= ch V^\Lambda (1-t_1^n + t_3^n t_2^n - t_3 -
\] (3.76)
Finally, we can show that (3.78) may be represented as follows:

\[-t_1t_2 + t_1^{n_1}t_2 - t_1^{n_1}t_2t_3^2 + t_1t_2t_3^2 - t_1^{n_1}t_2^2t_3 + t_1^{n_1}t_2t_3^2 - t_1^{n_1}t_2^2t_3 - t_1^{n_1}t_2^2t_3^2 + t_1^{n_1}t_2t_3^2,\]

\[n_1 = 2j_1 + 1 \geq 1, \quad d = j_1 + 1, \quad j_2 = 0.\]

This formula is valid for all \(j_1 \in (1/2)\mathbb{Z}_+, j_2 = 0\). Note, however, that for \(j_1 = 1/2\) the terms in the fourth row cancel each other, while for \(j_1 = 0\) the terms in the third row cancel each other. To show that (3.76) coincides with (3.74) amounts to the explicit straightforward division of the polynomials:

\[
\frac{Q(t_1, t_2, t_3)}{(1 - t_1)(1 - t_2)(1 - t_3)(1 - t_1)(1 - t_2)(1 - t_3)}. \tag{3.77}
\]

The formula (3.76) represents an alternating sign summation over part of the Weyl group of \(\text{sl}(4, \mathbb{C})\) (called reduced Weyl group in [209]) and may be obtained using [381, 382]. Note, however, that the ultimate formula is (3.74), which is obtained in a straightforward manner.

Analogously, the spectrum given in (3.68) can be represented by the following character formula:

\[
\text{ch } L_A = e(\Lambda) \left(\sum_{k=0}^{N-1} \sum_{\ell=0}^{N-1-k} \sum_{n=0}^{\min(N-1-\ell, N-1-2j_1)} t_{13}^k t_{12}^n + \right. \\
+ \sum_{k=0}^{N-1} \sum_{\ell=1}^{N-1-k} \sum_{n=0}^{N-1-2j_1} t_{13}^k t_{23}^n + \\
\left. \sum_{k=0}^{N-1} \sum_{\ell=0}^{N-1-k} \sum_{n=1}^{\min(N-1-\ell, 2j_1)} t_{13}^k t_{12}^n \right) \tag{3.78}
\]

Finally, we can show that (3.78) may be represented as follows:

\[
\text{ch } L_A = \text{ch } L_{2j_1+1,N-2j_1,1}^{\mathbb{C}} - \text{ch } L_{2j_1-1,N-1-2j_1,2}^{\mathbb{C}} + \text{ch } L_{2j_1-1,N-1-2j_1,1}^{\mathbb{C}},
\]

\[J_1 \neq 0, \tag{3.79a}\]

\[= \text{ch } L_{1,N,1}^{\mathbb{C}} - \text{ch } L_{1,N-2,1}^{\mathbb{C}}, \quad J_1 = 0, \tag{3.79b}\]

where \(L_{n_1,n_2,n_3}^{\mathbb{C}}\), \(n_1, n_2, n_3 \in \mathbb{N}\), denote the finite-dimensional irreducible (non-unitary) representation of \(\text{su}(2, 2)\) with character formula (cf. [195]):

\[
\text{ch } L_{n_1,n_2,n_3} = \text{ch } V^{A} \left(1 - t_1^{n_1} - t_2^{n_2} - t_3^{n_3} + t_1^{n_1}t_3^{n_3} + t_1^{n_1}t_2^{n_2} + +t_3^{n_3}t_2^{n_2} + t_1^{n_1}t_2^{n_2} + t_3^{n_3}t_2^{n_2} - t_1^{n_1}t_2^{n_2}t_3^{n_3} - \\
- t_1^{n_1}t_2^{n_2}t_3^{n_3} - t_1^{n_1}t_2^{n_2}t_3^{n_3} - t_1^{n_1}t_2^{n_2}t_3^{n_3} - \\
- (t_1t_2)^{n_1} - (t_2t_3)^{n_2} + t_1^{n_1}t_2^{n_2} + t_3^{n_3}t_2^{n_2} + \right)
\]
\[+ t_1^{n_1} (t_2 t_3)^{n_{13}} + (t_1 t_2)^{n_{12}} t_3^{n_{13}} + t_1^{n_{13}} (t_2 t_3)^{n_{23}} + \\
(t_1 t_2)^{n_{13}} t_3^{n_{12}} - t_1^{n_{12}} t_2^{n_{13}} t_3^{n_{13}} - t_1^{n_{13}} t_2^{n_{23} + n_{13}} t_3^{n_{23}} - \\
- (t_1 t_2 t_3)^{n_{13}} + (t_1 t_2 t_3)^{n_{13}} t_2^{n_{13}} \right) \tag{3.80} \]

and dimension \(d_{n_1, n_2, n_3}^c \) (cf. (3.61a)) and in (3.79) we use the convention \(chL_{n_1, n_2, n_3} = 0 \) if any \(n_k = 0 \), which happens for \(J_1 = 1/2 \) or for \(N = 2J_1 + 1 \). A simple consequence of (3.79) is:

\[
 d(N, J_1) = \begin{cases}
 d_{2J_1+1, N-2J_1, 1}^c - d_{2J_1, N-1-2J_1, 2}^c + d_{2J_1-1, N-1-2J_1, 1}, & J_1 \neq 0, \\
 d_{1, N, 1}^c - d_{1, N-2, 1}, & J_1 = 0.
\end{cases} \tag{3.81} \]

As we noted the dimensions of the massless representations are generically smaller than the corresponding classical dimensions (the first terms on the RHS of (3.81)).