Contents

1 Introduction — 1
 1.1 Main Properties of QCD — 1
 1.2 Principal Tools to Work with QCD in the High-Energy Regime — 2

2 Particle Number Operators in Quantum Mechanics and in Quantum Field Theory — 5
 2.1 Quantum Mechanics — 5
 2.1.1 Time Evolution of Classical Systems — 5
 2.1.2 Hilbert Space and Operators — 9
 2.1.3 From Classical to Quantum Mechanics: The Heisenberg Picture — 10
 2.1.4 The Schrödinger Picture — 11
 2.1.5 Time Evolution in the Dirac Picture — 13
 2.1.6 Scattering Matrix in the Dirac Picture, Time and Path Ordering — 14
 2.1.7 Path Ordering — 17
 2.1.8 Connection Between the Heisenberg and Dirac Pictures — 19
 2.2 Correlation Functions in Quantum Field Theory — 20
 2.2.1 Correlation Functions in the Heisenberg Picture — 20
 2.2.2 Correlation Functions in the Dirac Pictures — 23
 2.2.3 Positive and Negative Frequency Decomposition — 24
 2.2.4 Quantum Harmonic Oscillator: Particle Number Representation — 27
 2.2.5 Creation and Annihilation Operators and Normal Ordering — 29
 2.2.6 Wick’s Theorems: Normal and Time Ordering — 30
 2.3 Summary — 32

3 Geometry of Quantum Field Theories — 33
 3.1 Parallel Transport and Wilson Lines — 33
 3.1.1 The Parallel Transporter — 33
 3.1.2 Non-Abelian Paths — 36
 3.1.3 The Covariant Derivative — 40
 3.2 The Gauge Field Tensor and Wilson Loops — 41
 3.3 Summary — 47

4 Basics of Wilson Lines in QCD — 49
 4.1 A Wilson Line Along a Path — 49
 4.1.1 Properties of Wilson Lines — 50
 4.1.2 Path Ordering — 50
4.2 Piecewise Wilson Lines —— 53
4.3 Wilson Lines on a Linear Path —— 58
4.3.1 Bounded from Below —— 58
4.3.2 Bounded from Above —— 60
4.3.3 Path Reversal —— 61
4.3.4 Finite Wilson Line —— 65
4.3.5 Infinite Wilson Line —— 69
4.3.6 External Momenta —— 73
4.4 Relating Different Path Topologies —— 74
4.5 Piecewise Linear Wilson Lines —— 77
4.5.1 Path Functions —— 81
4.5.2 Diagrams with Final-State Cuts —— 83
4.6 Eikonal Approximation —— 87

5 Gauge-Invariant Parton Densities —— 91
5.1 Revision of Deep Inelastic Scattering —— 91
5.1.1 Kinematics —— 91
5.1.2 Invitation: The Free Parton Model —— 93
5.1.3 The Parton Model —— 95
5.1.4 Parton Distribution Functions —— 100
5.1.5 Operator Definition for PDFs —— 104
5.1.6 Gauge-Invariant Operator Definition —— 107
5.2 Semi-inclusive Deep Inelastic Scattering —— 111
5.2.1 Conventions and Kinematics —— 111
5.2.2 Structure Functions —— 113
5.2.3 Transverse Momentum-Dependent PDFs —— 115
5.2.4 Gauge-Invariant Definition for TMDs —— 118
5.3 Evolution of TMDs —— 123
5.3.1 About the Rapidity Cut-offs —— 126

6 Simplifying Wilson Line Calculations —— 129
6.1 Advanced Colour Algebra —— 129
6.1.1 Calculating Products of Fundamental Generators —— 130
6.1.2 Calculating Traces in the Adjoint Representation —— 135
6.2 Self-Interaction Blobs —— 138
6.2.1 2-Gluon Blob —— 138
6.2.2 3-Gluon Blob —— 141
6.3 Wick Rotations —— 144
6.3.1 Regular Wick Rotation —— 144
6.3.2 Wick Rotation with Wilson Lines —— 147
6.3.3 Light-Cone Coordinates: Double Wick Rotation —— 150
6.4 Wilson Integrals —— 151
6.4.1 2-Gluon Blob Connecting Two Adjoining Segments —— 154