Contents

Introduction — 1

Part I: Ergodic Rates for Markov Chains and Processes

1. **Markov Chains with Discrete State Spaces** — 7
 1.1 Basic Definitions and Facts — 7
 1.2 Ergodic Theorem — 9
 1.2.1 Ergodic Theorem for Finite MCs — 9
 1.2.2 “Analytic” Proof of Theorem 1.2.1: Contraction Argument — 11
 1.2.3 “Probabilistic” Proof of Theorem 1.2.1: Coupling Argument — 13
 1.2.4 Recurrence and Transience. Ergodic Theorem for Countable MCs — 15
 1.3 Stationary MCs: Ergodicity, Mixing, and Limit Theorems — 17
 1.4 Comments — 23

2. **General Markov Chains: Ergodicity in Total Variation** — 25
 2.1 Basic Definitions and Facts — 25
 2.2 Total Variation Distance and the Coupling Lemma — 27
 2.3 Uniform Ergodicity: The Dobrushin theorem — 33
 2.4 Preliminaries to Nonuniform Ergodicity: Motivation and Auxiliaries — 36
 2.5 Stabilization of Transition Probabilities: Doob’s Theorem — 40
 2.6 Nonuniform Ergodicity at Exponential Rate: The Harris Theorem — 45
 2.7 Nonuniform Ergodicity at Subexponential Rates — 50
 2.8 Lyapunov-Type Conditions — 55
 2.8.1 Linear Lyapunov-Type Condition and Exponential Ergodicity — 55
 2.8.2 Lyapunov-Type Condition for Cesàro Means of Moments — 58
 2.8.3 Sublinear Lyapunov-Type Conditions and Subexponential Ergodicity — 59
 2.9 Dobrushin Condition: Sufficient Conditions and Alternatives — 67
 2.10 Comments — 71

3. **Markov Processes with Continuous Time** — 73
 3.1 Basic Definitions and Facts — 73
 3.2 Ergodicity in Total Variation: The Skeleton Chain Approach — 74
 3.3 Diffusion Processes — 85
 3.3.1 Lyapunov-Type Conditions — 85
 3.3.2 Dobrushin Condition — 90
 3.3.3 Summary — 91
 3.4 Solutions to Lévy-Driven SDEs — 93
 3.4.1 Lyapunov-Type Condition: “Light Tails” Case — 94
 3.4.2 Lyapunov-Type Condition: “Heavy Tails” Case — 103
 3.4.3 Dobrushin Condition — 107