List of Figures

Figure 2.1: The Interactive Collaborative Environment (ICE) — 21
Figure 2.2: Concept of Blend — 22
Figure 2.3: Blend for a computer window — 23
Figure 2.4: Conceptual blending in mixed reality spaces — 25
Figure 2.5: The ICE as a blended space — 29
Figure 4.1: The role of bodily self-consciousness in Human Computer Confluence. — 57
Figure 4.3: (Adapted from Riva (2014)) Riva, G. (2014). Out of my real body: cognitive neuroscience meets eating disorders. Front Hum Neurosci, 8, 236. — 60
Figure 4.4: The disturbances of bodily self-consciousness — 62
Figure 4.5: The “spatial image” amodal spatial representational format — 65
Figure 6.1: A conceptual representation of the process of epistemic expansion driven by transformative experience (adapted from Koltko-Rivera, 2004) — 104
Figure 6.2: A possible schematization of the transformative process. The exposure to novel information (i.e. awe-inducing stimuli) triggers the process of assimilation. If integration fails, the person experiences a critical fluctuation that can either lead to rejection of novelty or to an attempt to accommodate existing schema, eventually generating new knowledge structures and therefore producing an epistemic expansion — 117
Figure 7.1: Computer-mediated musical interaction: action-perception loops (performing-listening) can be established taking into account notions such as objects affordances, playing techniques and metaphors. The collaborative and social interactions should also be taken into account — 129
Figure 7.2: Modular Musical Interfaces by the Interlude Consortium. Top: 3D simulation of the central motion unit (top-left) that can be modified with passive or active accessories (design: NoDesign.net, Jean-Louis Frechin, Uros Petrevski). Middle: Prototypes of the Modular Musical Objects. Bottom: MO-Kitchen scenario, illustrating the case where the MO are associated with everyday objects (Rasamimanana, Bloit & Schnell) — 131
Figure 7.3: Example of one scenario of the Urban Musical Game. Participants must continuously pass the ball to the others. The person looses if she/he holds the ball when an explosive sound is heard. This moment can be anticipated by the participants by listening to evolution of the music: from the tempo acceleration and the pitch increase. Moreover, the participants can also influence the timing of the sonic cues by performing specific moves (e.g. spinning the ball) — 135
Figure 8.1: Three-Party Interaction Scheme for collective improvisation. In yellow the interactions held according to the human and the instrument paradigm — 146
Figure 8.2: Top: Music sequence: $S = \{Do, Mi, Fa, Do, Re, Mi, Fa, Sol, Fa, Do\}$. Bottom: MFG-Cl for sequence S. There is one-to-one correspondence between the notes and the states of the MFG (each note event is exactly one state). Arrows in black and grey color represent transitions (factors) and suffix links respectively — 148
Figure 8.3: Panorama of control parameters for generation. The scheduling process is divided into 3 basic steps: source, target and path (from, to, how). Both source and target can be implied either through local (state) or contextual (pattern) parameters. The scheduled path is described with the help of constraints, which can be local (intra-state) and global (interstate), or may concern information about coherency/novelty tradeoff and the rate of repeated continuations.
Problems of different classes can be combined, each time giving a different generation method —— 150

Figure 8.4: Overall Computer Architecture of GrAIPE —— 151

Figure 8.5: Graphical Interface for the interaction core. The vertical and the horizontal axis represent the reference and the improvisation time respectively. We suppose that the system has learned the sequence S of Figure 8.2 through the MMFG (on the vertical axis). Linear improvisation corresponds to the linear function \(y(x) = x + b \) (vectors \([0, A], [A', B], [B', C], [C', D]\)). Continuations through external transitions correspond to vectors \([A, A'], [B, B'], [C, C']\) and are due, each time, to the structure of MMFG. A point in this 2−D plane specifies the “where” (reference time at the vertical axis) and the “when” (improvisation time at the horizontal axis). The user can guide the improvisation process by setting points - thus Q constraints - in this 2−D plane. In the case shown in the figure, we may consider that the user, at time 0, selected the point D. This means that the system should improvise in such way so as to find itself after 17 notes at note fa. The path 0AA'B'B'CC'D shows the sequence that has been selected by the computer in order to fulfill the constraints set by the user. The produced sequence is the one shown in the figure below the horizontal axis —— 153

Figure 9.1: (a) The co-author of this chapter at work. (b) The virtual-world avatar, used as her proxy —— 161

Figure 9.2: Schematic network diagrams of the proxy configured in three modes: (a) background, (b) foreground, and (c) mixed mode. The diagrams are deliberately abstracted for simplification. Full lines denote continuous data streams, and dotted lines denote discrete events. Different colors denote the different modalities —— 163

Figure 9.3: The spectrum from full agent autonomy (foreground mode) on the one side to full human autonomy (background mode) on the other, with mixed mode in the middle. —— 164

Figure 9.6: Screenshots from the case study. Top left: the classroom. Top right: the proxy representation as projected in class. Bottom: the proxy owner receiving a Skype call from the proxy —— 167

Figure 9.7: A schematic diagram of the study setup, showing the proxy owner in the lab presented as an avatar on the screen in the classroom. The students communicate with the proxy using mobile devices. During the experiment the proxy owner was also outdoors and communicated with the class in mixed mode —— 167

Figure 9.8: A screenshot of one of the participants in front of a projection screen, showing the mediator and the live video feed —— 168

Figure 9.9: A simplified diagram of the proxy setup used in this study. The diagram shows the generic components connected by arrows for continuous streams and by dotted arrows for discrete events —— 169

Figure 9.10: The three conditions in the study: top: MM – both participants experience a male avatar, middle: FF – both participants experience a female avatar, bottom: MF – the male participant experiences a male avatar and the female participant experiences a female avatar —— 170

Figure 10.1: Basic principle of a BCI: The electrical signals from the brain are acquired, before feature −characteristic with the given task− are extracted. These are then classified to generate action, which are controlling the robotic devices. The participant immediately either sees the output of the BCI and/or the generated action —— 179

Figure 10.2: The context awareness principle: The user issues high-level commands via a brain-computer interface mostly on a lower pace. The system is acquiring fast and precise the environmental information (via sonars, webcams...). The context awareness system combines the two information to achieve a path planning and obstacle avoidance, so that a control of the robotic device is possible (shared control) and e.g. the wheelchair can move forward, turn left or right. Modified from Rupp et al. (2014) —— 180
Figure 10.3: (a) Picture of a healthy subject sitting in the BCI controlled wheelchair. The main components on our brain-controlled robotic wheelchair are indicated with close-ups on the sides. The obstacles identified via the webcams are highlighted in red on the feedback screen and will be avoided by the context awareness system. (b) Trajectories of a subject during BCI control reconstructed from the odometry. The start, end and target positions as well as the BCI triggered turnings are indicated. Modified from Carlson & Millán (2013) —— 183

Figure 10.4: (a) A tetraplegic end-user (C6 complete) demonstrates his acquired motor imagery skills, manoeuvring the brain-controlled tele-presence robot in front of participants and press at the “TOBI Workshop IV”, Sion, Switzerland, 2013. (b) Layout of the experimental environment with the four target positions (T1, T2, T3, T4), start position (R) —— 184

Figure 10.5: (a) Picture of BCI subject with an adaptable passive hand orthosis. The orthosis is capable of producing natural and smooth movements when coupled with FES. It evenly synchronizes (by bendable strips on the back) the grasping movements and applied forces on all fingers, allowing for naturalistic gestures and functional grasps of everyday objects. (b) Screen shot from the pioneering work showing the first BCI controlled grasp by a tetraplegic patient (Pfurtscheller et al., 2003) —— 186

Figure 10.6: EEG correlates of movement intention: (a) Decoding of movement related potentials in both able-bodied and stroke subjects. (b) Single trial analysis of EEG signals in a center-out tasks yield recognition about chance level at about 500 ms before the movement onset (green line), earlier than any observable muscle activity (magenta line) (Lew et al., 2012). (c) Car driving scenario. Low-frequency oscillations (<1 Hz) reflect preparatory activity up to 1 s before steering actions in a car simulator. (d) As shown in the topographic representation this activity appears over central midline areas, consistent with movement-related potentials reported in simpler tasks (Gheorghe et al., 2013) —— 189

Figure 11.1:CEEDs eXperience Induction Machine, an immersive space equipped with a number of sensors and effectors (retrieved with permission from “BrainX: embodied exploration of neural data” by Betella et al., 2014) —— 204

Figure 11.2:CEEDs ‘history’ application (retrieved with permission from “Spatializing experience: a framework for the geolocalization, visualization and exploration of historical data using VR/AR technologies” by Pacheco et al., 2014) —— 205

Figure 12.1: This graphical depiction represents the need to rigorously quantify human-to-human interaction for two main purposes. The first is to derive useful principles to guide the implementation of robot-to-human interaction. The second is that such artificially built interaction needs to be evaluated against its natural benchmark. Closing this conceptual loop, in our opinion, is the only way to establish an effective HCC with an embodied artefact. —— 223

Figure 14.1: Framework for tailoring VR based motor rehabilitation after stroke. The goal is to utilize HCC concepts to achieve a maximal engagement of motor control brain related networks, to mobilize cortical plasticity for maximizing the use of remaining cortico-spinal tracts, and to generate meaningful functional movement. There is therefore a confluence of technology with the patient in which interface technology captures the available voluntary and involuntary control signals, and VR closes the act-sense loop to generate meaningful actions. This approach is designed to recruit motor related networks, to support optimal rehabilitation guidelines and to provide appropriate feedback, motivation and personalization in training —— 248

Figure 14.2: The RehabNet system architecture. It consists of three main building blocks: Hardware for device support, Control Panel for data translation and emulation, and Web content for accessing the rehabilitation content. All blocks are interconnected in a client-server (open) architecture. Adapted from (Vourvopoulos et al., 2013) —— 250

Figure 14.3: The Neurorehabilitation Training Toolkit (NTT). a) The NTT trains bimanual coordination and requires the use of a personal computer and 2 computer mice. b) Mice data provide
accurate information on movement speed and acceleration that is used to adapt the rehabilitation training parameters. Adapted from (Bermúdez i Badia & Cameirao, 2012) — 251

Figure 14.4: NTT with a myo-electric robotic system. a) Components of the system (robotic orthosis, tracking setup, and training game task) while being used by a stroke patient. b) Effect of the level of assistance of the limb orthosis on the amount of biceps movement. c) Quantification of the correlation of biceps movement and overall arm movement. d) Restoration of paretic arm movement as % of non-paretic arm in presence and absence of robotic assistance. Adapted from (Bermúdez i Badia, Lewis et al., 2012) — 253

Figure 14.5: Analysis of brain activity for different motor training conditions: motor only, motor and mental imagination, and mental imagination only. Blue indicates de-synchronization of neural responses and red enhanced synchronization of neural responses as compared to baseline. EEG mapping realized with electrodes at F3, C3, P3, T3, F4, C4, P4, T4 and Cz of the international 10–20 system. Adapted from (Bermúdez i Badia et al., 2013) — 254

Figure 14.6: Personalization in the Neurorehabilitation Training Toolkit (NTT). a) The user controls the movements of an avatar that flies a glider to collect a number of objects in a VR environment. The target direction is achieved by balancing left and right arm movements. b) The training task is adjusted to the performance of the user through an algorithm that captures the efficiency of actions and adapts the parameters of the task accordingly. Adapted from (Bermúdez i Badia & Cameirao, 2012) — 256

Figure 15.1: The vision: An ICT online platform for preventing andretarding elderly diseases and for promoting older people’s autonomy — 271

Figure 16.1: Trajectories corresponding to various activities: cooking (green), dishwashing (red), eating (magenta), watching TV (blue) — 280

Figure 16.2: Overview of tracking-based activity detection — 281

Figure 16.3: Overview of sensor-based activity detection — 284

Figure 16.5: Sensor setup for the kitchen experiment (left), camera view (right) — 285

Figure 16.6: Overview of the generic framework, fusing sensor readings with trajectories — 285

Figure 16.7: Camera views in the apartment experiment. Living-room (left), corridor (center), kitchen (right) — 286

Figure 16.8: Graphical representation of the detection accuracy in the kitchen experiment. Actual activities (green–top), detected activities (red–bottom) — 288

Figure 16.9: Graphical representation of the activity detection accuracy in the apartment experiment. Actual activities (green–top), detected activities (red–bottom) — 289

Figure 17.1: Overview of the Human-Car confluence concept (based on (Ferscha & Riener, 2009)) — 297

Figure 17.2: Social engagement in a collective traffic system. Successful application requires a) reliable and accurate data sources (driver, vehicle), b) authentic models to predict driver behavior and vehicle state, c) intelligent cloud services, d) non-distracting (driver) notification channels — 301

Figure 17.3: Driving advice from expert drivers would help nonlocals to optimize their driving behavior and, thus, to drive more efficient and safe — 306