Section I: Conceptual Frameworks and Models

Alois Ferscha

1 A Research Agenda for Human Computer Confluence — 7
 1.1 Introduction — 8
 1.2 Generations of Pervasive / Ubiquitous (P/U) ICT — 9
 1.3 Beyond P/U ICT: Socio-Technical Fabric — 11
 1.4 Human Computer Confluence (HCC) — 12
 1.5 The HCC Research Agenda — 13
 1.5.1 Large Scale Socio-Technical Systems — 13
 1.5.2 Ethics and Value Sensitive Design — 14
 1.5.3 Augmenting Human Perception and Cognition — 14
 1.5.4 Empathy and Emotion — 15
 1.5.5 Experience and Sharing — 15
 1.5.6 Disappearing Interfaces — 15
 1.6 Conclusion — 16
 References — 16

David Benyon and Oli Mival

2 Designing Blended Spaces for Collaboration — 18
 2.1 Introduction — 18
 2.2 Blending Theory — 21
 2.3 Blended Spaces — 24
 2.4 Designing the ICE — 26
 2.4.1 The physical Space — 26
 2.4.2 The Digital Space — 27
 2.4.3 The Conceptual Space — 28
 2.4.4 The Blended Space — 29
 2.5 The TACIT Framework — 29
 2.5.1 Territoriality — 30
 2.5.2 Awareness — 31
 2.5.3 Control — 32
 2.5.4 Interaction — 33
Francesca Morganti

3 "Being There" in a Virtual World: an Enactive Perspective on Presence and its Implications for Neuropsychological Assessment and Rehabilitation — 40

3.1 Introduction — 40
3.2 Enactive Cognition — 42
3.3 Enactive Neuroscience — 44
3.4 Enactive Presence in Virtual Reality — 45
3.5 Enactive Technologies in Neuropsychology — 48
3.6 Enactive Knowledge and Human Computer Confluence — 50
References — 53

Giuseppe Riva

4 Embodied Medicine: What Human-Computer Confluence Can Offer to Health Care — 55

4.1 Introduction — 55
4.2 Bodily Self-Consciousness — 57
4.2.1 Bodily Self-Consciousness: Its Role and Development — 58
4.2.2 First-Person Spatial Images: the Common Code of Bodily Self-Consciousness — 63
4.3 The Impact of Altered Body Self-Consciousness on Health Care — 67
4.4 The Use of Technology to Modify Our Bodily Self-Consciousness — 70
4.5 Conclusions — 73
References — 75

Bruno Herbelin, Roy Salomon, Andrea Serino and Olaf Blanke

5 Neural Mechanisms of Bodily Self-Consciousness and the Experience of Presence in Virtual Reality — 80

5.1 Introduction — 80
5.2 Tele-Presence, Cybernetics, and Out-of-Body Experience — 81
5.3 Immersion, Presence, Sensorimotor Contingencies, and Self-Consciousness — 83
5.4 Presence and Bodily Self-Consciousness — 85
5.4.1 Agency — 86
5.4.2 Body Ownership and Self-Location — 88
5.5 Conclusion — 91
References — 92

Andrea Gaggioli

6 Transformative Experience Design — 97
6.1 Introduction — 97
6.2 Transformation is Different From Gradual Change — 98
6.2.1 Transformative Experiences Have an Epistemic Dimension and a Personal Dimension — 101
6.2.2 Transformative Experience as Emergent Phenomenon — 105
6.2.3 Principles of Transformative Experience Design — 106
6.2.3.1 The Transformative Medium — 106
6.2.3.1.1 I Am a Different Me: Altering Bodily Self-Consciousness — 107
6.2.3.1.2 I Am Another You: Embodying The Other — 108
6.2.3.1.3 I Am in a Paradoxical Reality: Altering the Laws of Logic — 109
6.2.3.2 Transformative Content — 111
6.2.3.2.1 Emotional Affordances — 111
6.2.3.2.2 Epistemic Affordances — 112
6.2.3.3 The Transformative Form — 113
6.2.3.3.1 Cinematic Codes — 113
6.2.3.3.2 Narratives — 113
6.2.3.4 The Transformative Purpose — 115
6.2.3.4.1 Transformation as Liminality — 115
6.2.3.4.2 The Journey Matters, Not the Destination — 116
6.3 Conclusion: the Hallmarks of Transformative Experience Design — 117
References — 118

Section II: Emerging Interaction Paradigms

Frédéric Bevilacqua and Norbert Schnell

7 From Musical Interfaces to Musical Interactions — 125
7.1 Introduction — 125
7.2 Background — 127
7.3 Designing Musical Interactions — 128
7.4 Objects, Sounds and Instruments — 129
Robert Leeb, Ricardo Chavarriaga, and José d. R. Millán

10 Brain-Machine Symbiosis —— 175
10.1 Introduction —— 175
10.2 Applied Principles —— 178
10.2.1 Brain-Computer Interface Principle —— 178
10.2.2 The Context Awareness Principle —— 178
10.2.3 Hybrid Principle —— 180
10.3 Direct Brain-Controlled Devices —— 181
10.3.1 Brain-Controlled Wheelchair —— 181
10.3.2 Tele-Presence Robot Controlled by Motor-Disable People —— 183
10.3.3 Grasp Restoration for Spinal Cord Injured Patients —— 185
10.4 Cognitive Signals and Mental States —— 187
10.4.1 Error-Related Potentials —— 187
10.4.2 Decoding Movement Intention —— 188
10.4.3 Correlates of Visual Recognition and Attention —— 189
10.5 Discussion and Conclusion to Chapter 10 —— 190

References —— 192

Jonathan Freeman, Andrea Miotto, Jane Lessiter, Paul Verschure, Pedro Omedas, Anil K. Seth, Georgios Th. Papadopoulos, Andrea Caria, Elisabeth André, Marc Cavazza, Luciano Gamberini, Anna Spagnolli, Jürgen Jost, Sid Kouider, Barnabás Takács, Alberto Sanfeliu, Danilo De Rossi, Claudio Cenedese, John L. Bintliff, and Giulio Jacucci

11 The Human as the Mind in the Machine: Addressing Big Data —— 198
11.1 ‘Implicitly’ Processing Complex and Rich Information —— 198
11.2 Exploiting Implicit Processing in the Era of Big Data: the CEEDs Project —— 201
11.3 A Unified High Level Conceptualisation of CEEDs —— 206
11.4 Conclusion —— 209

References —— 210

Alessandro D’Ausilio, Katrin Lohan, Leonardo Badino and Alessandra Sciutti

12 Studying Human-Human interaction to build the future of Human-Robot interaction —— 213
12.1 Sensorimotor Communication —— 213
12.1.1 Computational Advantages of Sensorimotor Communication —— 214
Section III: Applications

Joris Favié, Vanessa Vakili, Willem-Paul Brinkman, Nexhmedin Morina and Mark A. Neerincx

13 State of the Art in Technology-Supported Resilience Training For Military Professionals — 229

13.1 Introduction — 229
13.2 Psychology — 230
13.2.1 Resilience — 230
13.2.2 Hardiness — 231
13.3 Measuring Resilience — 231
13.3.1 Biomarkers — 232
13.3.2 Emotional Stroop Test — 233
13.3.3 Startle Reflex — 233
13.3.4 Content Analysis of Narratives — 235
13.4 Resilience Training — 235
13.4.1 Stress Inoculation Training (SIT) — 235
13.4.2 Biofeedback Training — 235
13.4.3 Cognitive Reappraisal — 236
13.5 Review of Resilience Training Systems — 237
13.5.1 Predeployment Stress Inoculation Training (Presit) & Multimedia Stressor Environment (Mse) — 237
13.5.2 Stress Resilience in Virtual Environments (Strive) — 237
13.5.3 Immersion and Practice of Arousal Control Training (Impact) — 238
13.5.4 Personal Health Intervention Tool (PHIT) for Duty — 238
13.5.5 Stress Resilience Training System — 239
13.5.6 Physiology-Driven Adaptive Virtual Reality Stimulation for Prevention and Treatment of Stress Related Disorders — 239
13.6 Conclusions — 239

References — 240
List of contributing authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alois Ferscha</td>
<td>Johannes Kepler University, Linz, Austria</td>
<td>1</td>
</tr>
<tr>
<td>David Benyon</td>
<td>Edinburgh Napier University, UK</td>
<td>2</td>
</tr>
<tr>
<td>Oli Mival</td>
<td>Edinburgh Napier University, UK</td>
<td>2</td>
</tr>
<tr>
<td>Francesca Morganti</td>
<td>University of Bergamo, Italy</td>
<td>3</td>
</tr>
<tr>
<td>Giuseppe Riva</td>
<td>Catholic University of Sacred Heart, Milan, Italy</td>
<td>4</td>
</tr>
<tr>
<td>Bruno Herbelin</td>
<td>Ecole Polytechnique Fédérale de Lausanne, Switzerland</td>
<td>5</td>
</tr>
<tr>
<td>Roy Salomon</td>
<td>Ecole Polytechnique Fédérale de Lausanne, Switzerland</td>
<td>5</td>
</tr>
<tr>
<td>Andrea Serino</td>
<td>Università di Bologna, Italy</td>
<td>5</td>
</tr>
<tr>
<td>Andrea Gaggioli</td>
<td>Catholic University of Sacred Heart, Milan, Italy</td>
<td>6</td>
</tr>
<tr>
<td>Frederic Bevilacqua</td>
<td>Ircam, CNRS, UPMC, Paris, France</td>
<td>7</td>
</tr>
<tr>
<td>Norbert Schnell</td>
<td>Ircam, CNRS, UPMC, Paris, France</td>
<td>7</td>
</tr>
<tr>
<td>Fivos Maniatakos</td>
<td>IRCAM-CentrePompidou, Paris, France</td>
<td>8</td>
</tr>
<tr>
<td>Doron Friedman</td>
<td>Sammy Ofer School of Communications of Interdisciplinary Center Herzliya, Herzliya, Israel</td>
<td>9</td>
</tr>
<tr>
<td>Béatrice S. Hasler</td>
<td>Sammy Ofer School of Communications of Interdisciplinary Center Herzliya, Herzliya, Israel</td>
<td>9</td>
</tr>
<tr>
<td>Robert Leeb</td>
<td>École Polytechnique Fédérale de Lausanne, Switzerland</td>
<td>10</td>
</tr>
<tr>
<td>Ricardo Chavarriaga</td>
<td>École Polytechnique Fédérale de Lausanne, Switzerland</td>
<td>10</td>
</tr>
<tr>
<td>José d. R. Millán</td>
<td>École Polytechnique Fédérale de Lausanne</td>
<td>10</td>
</tr>
<tr>
<td>Olaf Blanke</td>
<td>University Hospital, Geneva, Switzerland</td>
<td>5</td>
</tr>
<tr>
<td>Author</td>
<td>Institution</td>
<td>Chapter</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>Jonathan Freeman</td>
<td>Goldsmiths, University of London, UK</td>
<td>11</td>
</tr>
<tr>
<td>Andrea Miotto</td>
<td>Goldsmiths, University of London, UK</td>
<td>11</td>
</tr>
<tr>
<td>Jane Lessiter</td>
<td>Goldsmiths, University of London, UK</td>
<td>11</td>
</tr>
<tr>
<td>Paul Verschure</td>
<td>Universitat Pompeu Fabra, Barcelona, Spain</td>
<td>11</td>
</tr>
<tr>
<td>Pedro Omedas</td>
<td>Universitat Pompeu Fabra, Barcelona, Spain</td>
<td>11</td>
</tr>
<tr>
<td>Anil K. Seth</td>
<td>University of Sussex, Falmer, Brighton, UK</td>
<td>11</td>
</tr>
<tr>
<td>Georgios Th. Papadopoulos</td>
<td>Centre for Research and Technology Hellas/Information Technologies Institute (CERTH/ITI), Greece</td>
<td>11</td>
</tr>
<tr>
<td>Andrea Caria</td>
<td>Eberhard Karls Universität Tübingen, Germany</td>
<td>11</td>
</tr>
<tr>
<td>Elisabeth André</td>
<td>Universität Augsburg, Germany</td>
<td>11</td>
</tr>
<tr>
<td>Marc Cavazza</td>
<td>Teesside University, UK</td>
<td>11</td>
</tr>
<tr>
<td>Luciano Gamberini</td>
<td>University of Padua, Italy</td>
<td>11</td>
</tr>
<tr>
<td>Anna Spagnolli</td>
<td>University of Padua, Italy</td>
<td>11</td>
</tr>
<tr>
<td>Jürgen Jost</td>
<td>Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany</td>
<td>11</td>
</tr>
<tr>
<td>Sid Kouider</td>
<td>CNRS and Ecole Normale Supérieure, Paris, France</td>
<td>11</td>
</tr>
<tr>
<td>Barnabás Takács</td>
<td>Technical University of Budapest, Hungary</td>
<td>11</td>
</tr>
<tr>
<td>Alberto Sanfeliu</td>
<td>Institut de Robotica i Informatica Industrial (CSIC-UPC), Barcelona, Spain</td>
<td>11</td>
</tr>
<tr>
<td>Danilo De Rossi</td>
<td>University of Pisa, Italy</td>
<td>11</td>
</tr>
<tr>
<td>Claudio Cenedese</td>
<td>Electrolux Global Technology Center, Udine, Italy</td>
<td>11</td>
</tr>
<tr>
<td>John L. Bintliff</td>
<td>Universiteit Leiden, the Netherlands</td>
<td>11</td>
</tr>
<tr>
<td>Giulio Jacucci</td>
<td>University of Helsinki, Finland</td>
<td>11</td>
</tr>
<tr>
<td>Alessandro D’Ausilio</td>
<td>IIT – Italian Institute of Technology, Genova, Italy</td>
<td>12</td>
</tr>
</tbody>
</table>
Katrin Solveig Lohan
HWU-Heriot-Watt University, Genova, Italy
Chapter 12

Leonardo Badino
IIT – Italian Institute of Technology, Genova, Italy
Chapter 12

Alessandra Sciutti
IIT – Italian Institute of Technology, Genova, Italy
Chapter 12

Joris Favié
Delft University of Technology, The Netherlands
Chapter 13

Vanessa Vakili
Delft University of Technology, The Netherlands
Chapter 13

Willem-Paul Brinkman
Delft University of Technology, The Netherlands
Chapter 13

Nexhmedin Morina
University of Amsterdam, The Netherlands
Chapter 13

Mark A. Neerincx
Delft University of Technology, The Netherlands
TNO Human Factors, Soesterberg, The Netherlands
Chapter 13

Monica Cameirao
Universidade da Madeira, Portugal
Polo Científico e Tecnológico da Madeira, Portugal
Chapter 14

Sergi Bermúdez i Badia
Universidade da Madeira, Portugal
Polo Científico e Tecnológico da Madeira, Portugal
Chapter 14

Pedro Gamito
Lusophone University, Lisbon, Portugal
Chapter 15

Jorge Oliveira
Lusophone University, Lisbon, Portugal
Chapter 15

Rodrigo Brito
Lusophone University, Lisbon, Portugal
Chapter 15

Diogo Morais
Lusophone University, Lisbon, Portugal
Chapter 15

Dimitris Giakoumis
Information Technologies Institute, Thessaloniki, Greece
Chapter 16

Georgios Papamakarios
Information Technologies Institute, Thessaloniki, Greece
Chapter 16

Manolis Vasileiadis
Information Technologies Institute, Thessaloniki, Greece
Chapter 16

Anastasios Drosou
Information Technologies Institute, Thessaloniki, Greece
Chapter 16
Dimitrios Tzovaras
Information Technologies Institute, Thessaloniki, Greece
Chapter 16

Myounghoon Jeon
Michigan Technological University, Houghton, USA
Chapter 17

Andreas Riener
Johannes Kepler University Linz, Austria
Chapter 17