Contents

1 Introduction — 1
 1.1 About this book — 1
 1.2 What happened so far? — 2
 1.3 Summary — 4
 1.4 Acknowledgments — 6

2 Machine models of transfinite computability — 9
 2.1 Introduction — 9
 2.1.1 Simulation of machine models — 11
 2.1.2 Halting problems — 13
 2.2 Infinitary analogues of register machines — 13
 2.2.1 wITRM-computations — 18
 2.3 Infinite time \(\alpha \)-register machines — 20
 2.3.1 ITRMs with one register — 25
 2.3.2 Coding transitive \(\epsilon \)-structures — 30
 2.3.3 Testing well-foundedness — 31
 2.3.4 Evaluating truth predicates and other properties of structures — 38
 2.3.5 Ordinal register machines — 42
 2.4 Infinitary analogues of Turing machines — 44
 2.5 Infinite time Turing machines — 45
 2.5.1 Stack representation for tape models — 48
 2.5.2 Computability notions for tape models — 49
 2.5.3 Clockable ordinals — 56
 2.5.4 \(\alpha \)-ITTM\s and \(\alpha \)-ITRMs — 61
 2.5.5 Weak ITTM\s — 62
 2.5.6 Ordinal Turing machines — 66
 2.5.7 Absoluteness of computations — 67
 2.6 Beyond computability: the jump operator — 68
 2.7 Further models — 69
 2.7.1 Deterministic ordinal automata — 69
 2.7.2 Infinite time Blum–Shub–Smale machines — 71
 2.7.3 Further models — 73
 2.8 Exercises — 74

3 Computability strength — 77
 3.1 Preliminaries — 77
 3.1.1 Hierarchies of sets and formulas — 77
 3.1.2 Basics on the constructible hierarchy — 79
 3.1.3 Admissibility — 83
3.1.4 Admissibility of constructible levels — 88
3.1.5 Computations and the constructible hierarchy — 92
3.2 The computability strength of ordinal register machines and α-register machines — 92
3.2.1 Lower bounds for ORMs — 94
3.2.2 ORMs without parameters — 101
3.3 The computational strength of α-register machines — 102
3.4 α-wITRMs and α-ITRMs — 105
3.4.1 Lower bounds — 114
3.5 α-TMs and OTMs — 118
3.6 α-ITTMαs and the Σ_2-machine — 120
3.6.1 Upper bounds — 125
3.6.2 The Σ_2-machine — 128
3.6.3 α-ITTM-computability and the theory machine — 130
3.6.4 Further consequences — 142
3.6.5 Further results on α-ITTMαs — 145
3.6.6 Without parameters — 146
3.7 Accidental and eventual writability — 148
3.7.1 Accidental and eventual writability for ITRMs — 148
3.7.2 Accidental and eventual writability for OTMs — 149
3.8 Summary — 152
3.9 Exercises — 153

4 Recognizability — 157
4.1 Preliminaries — 157
4.1.1 Extended truth predicates — 158
4.2 Lost melodies — 159
4.2.1 α-Machines — 165
4.2.2 Weak ITRMs — 165
4.3 Recognizability for infinite time register machines — 172
4.3.1 Gaps — 173
4.3.2 Aristophanean pairs — 176
4.3.3 Recognizability of the halting numbers — 178
4.3.4 A machine-free characterization of ITRM-recognizability — 180
4.4 Recognizability for ordinal Turing machines — 181
4.4.1 The recognizable closure for OTMs — 185
4.5 Variants of recognizability — 190
4.6 Summary — 192
4.7 Exercises — 193

5 Randomness — 195
5.1 Introduction — 195
5.2 Preliminaries on forcing and sets of real numbers — 195
5.3 Infinitary analogues of Sack’s theorem — 203
5.3.1 Sacks’ theorem for wiTRMs and ITRMs — 204
5.3.2 Sacks’ theorem for ITTMs — 205
5.3.3 Analogues for OTMs — 207
5.4 Randomness and recognizability — 210
5.5 Some results on ITRM-genericity — 212
5.6 OTMs and genericity — 216
5.7 Further results — 216
5.7.1 ITTMs and randomness — 217

6 Degree theory — 219
6.1 Preliminaries — 219
6.2 Degree theory for ITTMs — 219
6.2.1 Eventually writable degrees — 224
6.3 Degree theory for OTMs and ORMs — 225
6.4 Degree theory for ITRMs — 230
6.4.1 Degrees of recognizables — 233
6.5 Some results on the degree theory of other models — 236
6.6 Degrees of recognizability — 236

7 Complexity — 239
7.1 Introduction — 239
7.2 Complexity theory for ITTMs — 241
7.2.1 ITTM-complexity with dependency on the input — 244
7.2.2 Space complexity for ITTMs — 245
7.3 Complexity theory for OTMs — 247
7.3.1 NP-completeness for OTMs — 248
7.3.2 Structural properties of NP[∞] — 252
7.3.3 Strong space bounds and regularity — 256

8 Applications and interactions — 257
8.1 Introduction — 257
8.2 Ordinal Turing machines and the constructible hierarchy — 257
8.3 Infinitary computations and descriptive set theory — 258
8.4 Infinite time computability and Borel reducibility — 261
8.4.1 ITTM-reducibility and Borel reducibility — 262
8.5 Infinite time computable model theory — 264
8.6 Generalized effective reducibility — 265
8.6.1 An application: versions of the axiom of choice — 272
8.7 Further prospects — 275
9 Philosophical aspects — 277
9.1 Infinitary constructions in mathematics — 277
9.2 Idealized agents in the philosophy of mathematics — 281
9.2.1 Idealized agents in G. Takeuti’s foundational position — 282
9.2.2 Idealized agents and Philipp Kitcher’s mathematical empiricism — 283
9.2.3 Idealized agents in Ramsey’s foundations of mathematics — 283
9.2.4 Remarks — 284
9.3 Infinitary machines as formal models for idealized agents — 285
9.3.1 The idealized agent of set theory — 286
9.3.2 Transfinite working time — 287
9.3.3 Elementary steps — 289
9.3.4 Idealized agent machines and ordinal Turing machines — 290
9.3.5 Criteria for a defensible Church–Turing thesis for the transfinite — 291
9.4 Infinitary Agency as modeled by OTMs — 295
9.4.1 Transfinite creative subjects? — 299
9.5 Infinite time Turing machines and the revision theory of truth — 302
9.5.1 The revision theory of truth — 303
9.5.2 Connecting revision theory of truth and ITTMs — 308
9.5.3 Applying the connection — 309

Bibliography — 313

Index — 323