
3 Random variables

3.1 Introduction

Random variables constitute an extension of mathematical variables just like com-
plex variables providing an extension to the real variable system. Random variables
are mathematical variables with some probability measures attached to them. Before
giving a formal definition to random variables, let us examine some random experi-
ments and some variables associated with such random experiments. Let us take the
simple experiment of an unbiased coin being tossed twice.

Example 3.1. Tossing an unbiased coin twice. The sample space is

S = {(H ,T), (T ,H), (H ,H), (T ,T)}.

There are four outcomes or four elementary events. Let x be the number of heads in
the elementary events or in the outcomes. Then x can take the values 0, 1, 2, and thus
x is a variable here. But we can attach a probability statement to the values taken by
this variable x. The probability that x takes the value zero is the probability of getting
two tails and it is 1

4 . The probability that x takes the value 1 is the probability of getting
exactly onehead,which is 1

2 . The probability that x takes the value 2 is
1
4 . The probabil-

ity that x takes any another value, other than 0, 1, 2, is zero because it is an impossible
event in this random experiment. Thus the probability function, associated with this
variable x, denoted by f (x), can be written as follows:

f (x) =

{{{{{{
{{{{{{
{

0.25, for x = 0
0.50, for x = 1
0.25, for x = 2
0, elsewhere.

Here, x takes individually distinct values with non-zero probabilities. That is, x here
takes the specific value zero with probability 1

4 , the value 1 with probability
1
2 and the

value 2 with probability 1
4 . Such random variables are called discrete random vari-

ables. We will give a formal definition after giving a definition for a random variable.

We can also compute the following probability in this case.What is the probability
that x ≤ a for all real values of a? Let us denote this probability by F(a), that is,

F(a) = Pr{x ≤ a} = probability of the event {x ≤ a}.

From Figure 3.1, it may be noted that when a is anywhere from −∞ to 0, not includ-
ing zero, the probability is zero, and hence F(a) = 0. At x = 0, there is a probability 1

4
and this remains the same for all values of a from zero to 1 with zero included but 1 ex-
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cluded, that is, 0 ≤ a < 1. Remember that we are computing the sum of all probabilities
up to and including point x = a, or we are computing the cumulative probabilities in
the notation Pr{x ≤ a}. There is a jump at x = 1 equal to 1

2 . Thus when 1 ≤ a < 2, then
all the probabilities cumulated up to a is 0 + 1

4 + 0 + 1
2 + 0 = 3

4 . When a is anywhere
2 ≤ a < ∞, all the probabilities cumulated up to a will be 0 + 1

4 + 0 + 1
2 + 0 + 1

4 + 0 = 1.
Thus the cumulative probability function here, denoted by F(a) = Pr{x ≤ a}, can be
written as follows:

F(a) =

{{{{{{
{{{{{{
{

0, −∞ < a < 0
0.25, 0 ≤ a < 1
0.75, 1 ≤ a < 2
1, 2 ≤ a < ∞.

Here, for this variable x, we can associate with x a probability function f (x) and a
cumulative probability function F(a) = Pr{x ≤ a}.

Figure 3.1: Left: Probability function f (x); Right: Cumulative
probability function F (x).

Notation 3.1. Pr{c ≤ x ≤ d}: probability of the event that c ≤ x ≤ d.

Now let us examine another variable defined over this same sample space. Let y
be the number of heads minus the number of tails in the outcomes. Then y will take
the value −2 for the sample point (T ,T) where the number of heads is zero and the
number of tails is 2. The points (H ,T) and (T ,H) will give a value 0 for y and (H ,H)
gives a value 2 to y. If fy(y) denotes the probability function and Fy(a) = Pr{y ≤ a} the
cumulative probability function, thenwe have the following, whichmay also be noted
from Figure 3.2:

fy(y) =

{{{{{{
{{{{{{
{

0.25, y = −2
0.5, y = 0
0.25, y = 2
0, elsewhere.

Fy(a) =

{{{{{{
{{{{{{
{

0, −∞ < a < −2
0.25, −2 ≤ a < 0
0.75, 0 ≤ a < 2
1, 2 ≤ a < ∞.
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Both x and y here are discrete variables in the sense of taking individually distinct
values with non-zero probabilities. We may also note one more property that on a
given sample spaceanynumberof suchvariables canbedefined. The above ones,
x and y, are only two such variables.

Figure 3.2: Left: Probability function of y; Right: Cumulative
probability function of y.

Now, let us consider another example of a variable, which is not discrete. Let us ex-
amine the problem of a child playing with scissors and cutting a string of 10 cm into
two pieces.

Example 3.2 (Random cut of a string). Let one end of the string be denoted by 0 and
the other end by 10 and let the distance from zero to the point of cut be x. Then, of
course, x is a variable because we did not know where exactly would be the cut on
the string. What is the probability that the cut is anywhere in the interval 2 ≤ x ≤ 3.5?
In Chapter 1, we have seen that in a situation like this we assign probabilities propor-
tional to the length of the intervals and then

Pr{2 ≤ x ≤ 3.5} = 3.5 − 2.0
10

= 1.5
10

= 0.15.

What is the probability that the cut is between 2 and 2.001? This is given by

Pr{2 ≤ x ≤ 2.001} = 2.001 − 2.000
10

= 0.001
10

= 0.0001.

What is the probability that the cut is exactly at 2?

Pr{x = 2} = 2 − 2
10

= 0.

Here, x is definedona continuumof points and theprobability that x takes any specific
value is zero because here the probabilities are assigned as relative lengths. A point
hasno length. Suchvariables,whicharedefinedoncontinuumofpoints,will be called
continuous random variables.Wewill give a formal definition after defining a random
variable. A probability function which can be associated with this x, denoted by fx(x),
will be of the following form:

fx(x) =
{
{
{

1
10 , 0 ≤ x ≤ 10
0, elsewhere.

Let us see whether we can compute the cumulative probabilities here also.What is the
probability that x ≤ a for all real values of a? Let us denote this by Fx(a). Then when
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−∞ < a < 0, the cumulative probability is zero. When 0 ≤ a < 10, it is a
10 , probabilities

being relative lengths, and when 10 ≤ a < ∞ it is 10
10 + 0 = 1. Thus we have

Fx(a) =
{{{
{{{
{

0, −∞ < a < 0
a
10 , 0 ≤ a < 10
1, 10 ≤ a < ∞.

The probability function in the continuous case is usually called the density func-
tion. Some authors do not make a distinction; in both discrete and continuous cases,
the probability functions are either called probability functions or density functions.
We will use the term “probability function” in the discrete case and mixed cases and
“density function” in the continuous case. The density and cumulative density, for the
above example, are given in Figure 3.3.

Figure 3.3: Left: Density function of x; Right: Cumulative den-
sity function of x.

Here, we may note some interesting properties. The cumulative probability function
Fx(a) could have been obtained from the density function by integration. That is,

Fx(a) = ∫
a

−∞
f (t)dt = 0 + ∫

a

0

1
10

dt = [ t
10

]
a

0
= a
10

.

Similarly, the density is available from the cumulative density function by differenti-
ation since here the cumulative density function is differentiable. That is,

[ d
da

Fx(a)]
a=x

= [ d
da

a
10

]
a=x

= 1
10

= fx(x).

We have considered two discrete variables associated with the random experiment
in Example 3.1 and one continuous random variable in Example 3.2. In all of the three
cases, one could have computed the cumulative probabilities, or Pr{x ≤ a}was defined
for all real a, −∞ < a < ∞. Such variables will be called random variables. Before giv-
ing a formal definition, a fewmore observations are in order. In the two discrete cases,
we had the probability function, which were of the form:

f (x∗) = Pr{x = x∗} (3.1)

and the cumulative probability function was obtained by adding up the individual
probabilities. That is,

F(a) = Pr{x ≤ a} = ∑
−∞<x≤a

f (x). (3.2)

In Example 3.2, we considered one continuous random variable x where we had the
density function
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fx(x) =
{
{
{

1
10 , 0 ≤ x ≤ 10
0, elsewhere,

and the cumulative density function

Fx(a) = Pr{x ≤ a} =
{{{
{{{
{

0, −∞ < a < 0
a
10 , 0 ≤ a < 10
1, 10 ≤ a < ∞.

= ∫
a

−∞
fx(t)dt. (3.3)

Definition 3.1 (Random variables). Any variable x defined on a sample space S for
which the cumulative probabilities Pr{x ≤ a} can be defined for all real values of a,
−∞ < a < ∞, is called a real random variable x.

Definition 3.2 (Discrete random variables). Any randomvariable xwhich takes in-
dividually distinct values with non-zero probabilities is called a discrete random
variable and in this case the probability function, denoted by fx(x), is given by

fx(x∗) = Pr{x = x∗}

and obtained by taking successive differences in (3.2).

Definition 3.3 (Continuous random variables). Any random variable x, which is
defined on a continuum of points, where the probability that x takes a specific
value x∗ is zero, is called a continuous random variable and the density function
is available from the cumulative density by differentiation, when differentiable, or
the cumulative density is available by integration of the density. That is,

fx(x) = [ d
da

Fx(a)]
a=x

(3.4)

or

Fx(a) = ∫
a

−∞
fx(t)dt. (3.5)

Definition 3.4 (Distribution function). The cumulative probability/density func-
tion of a random variable x is also called the distribution function associated with
that random variable x, and it is denoted by F(x):

F(a) = [Pr{x ≤ a}, −∞ < a < ∞]. (3.6)

We can also define probability/density function and cumulative function, free of ran-
dom experiments, by using a few axioms.
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3.2 Axioms for probability/density function and distribution
functions

Definition 3.5 (Density/Probability function). Any function f (x) satisfying the fol-
lowing two axioms is called the probability/density function of a real random vari-
able x:
(i) f (x) ≥ 0 for all real x, −∞ < x < ∞;
(ii) ∫∞
−∞

f (x)dx = 1 if x is continuous; and ∑−∞<x<∞ f (x) = 1 if x is discrete.

Example 3.3. Check whether the following can be probability functions for discrete
random variables:

f1(x) =
{{{
{{{
{

2/3, x = −2
1/3, x = 5
0, elsewhere.

f2(x) =

{{{{{{
{{{{{{
{

3/4, x = −3
2/4, x = 0,
−1/4, x = 2
0, elsewhere.

f3(x) =
{{{
{{{
{

3/5, x = 0
3/5, x = 1
0, elsewhere.

Solution 3.3. Consider f1(x). Here, f1(x) takes thenon-zero values
2
3 and

1
3 at thepoints

x = −2 and x = 5, respectively, and x takes all other values with zero probabilities. Con-
dition (i) is satisfied, f (x) ≥ 0 for all values of x. Condition (ii) is also satisfied because
2
3 + 1

3 + 0 = 1. Hence f1(x) here can represent a probability function for a discrete ran-
dom variable x. We could have also stated f1(x) as follows:

f1(−2) =
2
3
; f1(5) =

1
3
; f (x) = 0 elsewhere

where, for example, f1(−2) means f1(x) at x = −2.
f2(x) is such that ∑x f2(x) = 1, and thus the second condition is satisfied. But f2(x)

at x = 2 or f2(2) = − 1
4 which is negative, and hence condition (i) is violated. Hence f2(x)

here cannot be the probability function of any random variable.
f3(x) is non-negative for all values of x because f3(x) takes the values 0,

3
5 ,

3
5 but

∑
x
f3(x) = 0 + 3

5
+ 3
5

= 6
5

> 1.

Here, condition (ii) is violated, and hence f3(x) cannot be the probability function of
any random variable.
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Example 3.4. Check whether the following can be density functions of some random
variables:

f1(x) =
{
{
{

1
b−a , a ≤ x ≤ b,b > a
0, elsewhere.

f2(x) =
{
{
{

cx4, 0 < x < 1
0, elsewhere.

f3(x) =
{
{
{

1
θe
− xθ , 0 ≤ x < ∞

0, elsewhere.

f4(x) =
{{{
{{{
{

x, 0 ≤ x < 1
2 − x, 1 ≤ x ≤ 2
0, elsewhere.

Solution 3.4. f1(x) is non-negative since it is either 0 or 1
b−a where b − a > 0. Hence

condition (i) is satisfied. Now, check the second condition:

∫
∞

−∞
f1(x)dx = 0 + ∫

b

a

1
b − a

dx = [ x
b − a

]
b

a
= b − a
b − a

= 1.

Hence the second condition is also satisfied. It is a density function of a continuous
random variable. The graph is given in Figure 3.4.

Figure 3.4: Uniform or rectangular density.

This density looks like a rectangle, and hence it is called a rectangular density. Since
the probabilities are available as integrals or areas under the curve if we take any in-
terval of length ϵ (epsilon) units, say from d to d + ϵ, then the probability that x falls
in the interval d to d + ϵ or d ≤ x ≤ d + ϵ is given by the integral:

∫
d+ϵ

d

1
b − a

dx =
ϵ

b − a
.

Since it is a rectangle, if we take an interval of length ϵ anywhere in the interval
a ≤ x ≤ b, then the area will be the same as ϵ

b−a or we can say that the total area 1 is
uniformly distributed over the interval [a,b]. In this sense, this density f1(x) is also
called uniform density. Also we may observe here that these unknown quantities a
and b could be any constants, free of x. As long as b > a, f1(x) is a density.
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f2(x) ≥ 0 for all values of x if c > 0 since either it is zero or x4 in the interval [0, 1]
which is positive. Thus condition (i) is satisfied if c > 0.Now, let us check condition (ii):

∫
∞

−∞
f2(x)dx = 0 + ∫

1

0
cx4dx

= [c x
5

5
]
1

0
= c
5
.

Hence condition (ii) is satisfied if c = 5. For c = 5, f2(x) is a density function.
f3(x) satisfies condition (i) when θ (theta) is positive because an exponential func-

tion can never be negative. Hence f3(x) takes zero or a positive value only. Now let us
check the second condition:

∫
∞

−∞

1
θ
e−

x
θ dx = 0 + ∫

∞

0

1
θ
e−

x
θ dx = [−e−

x
θ ]∞0 = 1.

Hence it is a density. Note thatwhatever be the value of θ as long as it is positive, f3(x) is
a density, see Figure 3.5.

Figure 3.5: Exponential or negative exponential density.

Since this density is associatedwith an exponential function it is called an exponential
density. Note that if θ is negative, then 1

θ < 0 even though the exponential function
remains positive. Thus condition (i) will be violated. If θ is negative, then the exponent
− x
θ > 0 thereby the integral from 0 to ∞ will be ∞. Thus condition (ii) will also be

violated. For θ ≤ 0 here, f3(x) cannot be a density. When integration is from 0 to ∞,
the exponential functionwith a positive exponent cannot create a densitywe need not
say “negative exponential density” andwe simply say that it is an exponential density,
and it is implied that the exponent is negative.

f4(x) is zero or x in [0, 1) and 2 − x in [1, 2], and hence f4(x) ≥ 0 for all x and con-
dition (i) is satisfied. The total integral is available from the integrals over the several
intervals:

∫
∞

−∞
f4(x)dx = 0 + ∫

1

0
xdx + ∫

2

1
(2 − x)dx + 0

= [x
2

2
]
1

0
+ [2x −

x2

2
]
2

1
=
1
2

+
1
2

= 1.

Thus, condition (ii) is also satisfied and f4(x) here is a density.
The graph of this density looks like a triangle, and hence it is called a triangular

density as shown in Figure 3.6.
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Figure 3.6: Triangular density.

Definition 3.6 (Parameters). Arbitrary constants sitting in a density or probability
function are called parameters.

In f1(x) of Example 3.4, there are two unknown quantities a and b. Irrespective of
the values of a and b, as long as b > a then we found that f1(x) was a density. Hence
there are two parameters in that density. In f3(x) of Example 3.4, we had one unknown
quantity θ. As long as θ was positive, f3(x) remained as a density. Hence there is one
parameter here in this density, and that is θ > 0.

Definition 3.7 (Normalizing constant). If a constant sitting in a function is such
that for a specific value of this constant the function becomes a density or proba-
bility function then that constant is called the normalizing constant.

In f2(x) of Example 3.4, there was a constant c but for c = 5, f2(x) became a density.
This c is the normalizing constant there.

Definition 3.8 (Degenerate random variable). If the whole probability mass is
concentrated at one point, then the random variable is called a degenerate ran-
dom variable or a mathematical variable. Consider the following density/probabil-
ity function:

f (x) =
{
{
{

1, x = b
0, elsewhere.

Here, at x = b the whole probability mass 1 is there and everywhere else the function
is zero. The random variable here is called a degenerate random variable or with prob-
ability 1 the variable x takes the value b or it is a mathematical variable. If there are
two points such that at x = cwe have probability 0.9999 and at x = d ≠ cwe have prob-
ability 0.0001, then it is not a degenerate random variable even though most of the
probability is at one point x = c.

Thus, statistics or statistical science is a systematic study of random phenomena
and random variables, extending the study of mathematical variables, and as such
mathematical variables become special cases of random variables or as degenerate
random variables. This author had coined the name “Statistical Science” when he
launched the Statistical Science Association of Canada, which became the present
Statistical Society of Canada. Thus in this author’s definition, statistical sciences has
a wider coverage compared to mathematical sciences. But nowadays the termmathe-
matical sciences is used to cover all aspects of mathematics and statistics.
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Example 3.5. Compute the distribution function for the following probability func-
tions:

f1(x) =

{{{{{{
{{{{{{
{

0.3, x = −2
0.2, x = 0,
0.5, x = 3
0, otherwise;

f2(x) =
{
{
{

c( 12 )
x , x = 0, 1,

0, otherwise.

Solution 3.5. The distribution function in the discrete case is

F(a) = Pr{x ≤ a} = ∑
−∞<x≤a

f (x).

Hence for f1(x), it is zero for −∞ < x < −2, then there is a jump of 0.3 at x = −2, and so
on. Therefore,

F(a) =

{{{{{{
{{{{{{
{

0, −∞ < a < −2
0.3, −2 ≤ a < 0
0.5 (= 0.3 + 0.2), 0 ≤ a < 3
1, 3 ≤ a < ∞.

It is a step function. In general, for a discrete case we get a step function as the distri-
bution function.

For f2(x), the normalizing constant c is to be determined to make it a probability
function. If it is a probability function, then the total probability is

0 +
2
∑
x=0

(c 1
2
)
x
= 0 + c(1 + 1

2
+ 1
4
) = c 7

4
.

Hence for c = 4
7 , f2(x) is a probability function and it is given by

f2(x) =

{{{{{{
{{{{{{
{

4/7, x = 0
2/7, x = 1
1/7, x = 2
0, otherwise.

Hence the distribution function is given by

F(x) =

{{{{{{
{{{{{{
{

0, −∞ < x < 0
4/7, 0 ≤ x < 1
6/7, 1 ≤ x < 2
1, 2 ≤ x < ∞.
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Again, note that it is a step function. The student may draw the graphs for the distri-
bution function for these two cases.

Example 3.6. Evaluate the distribution function for the following densities:

f1(x) =
{
{
{

1
θe
− xθ , 0 ≤ x < ∞

0, otherwise;

f2(x) =
{{{
{{{
{

x, 0 < x < 1
2 − x, 1 ≤ x < 2
0, otherwise.

Solution 3.6. The distribution function, by definition, in the continuous case is

F(t) = ∫
t

−∞
f (x)dx.

Hence in f1(x),

∫
t

−∞
f1(x)dx = 0 + ∫

t

0

1
θ
e−

x
θ dx

= [−e−
x
θ ]t0 = 1 − e−

t
θ , 0 ≤ t < ∞,

and zero from −∞ < x < 0. For f2(x), one has to integrate in different pieces. Evidently,
F(t) = 0 for −∞ < t < 0.When t is in the interval 0 to 1, the function is x and its integral
is x2

2 . Therefore,

[x
2

2
]
t

0
= t2

2
.

When t is in the interval 1 to 2 the integral up to 1, available from t2
2 at t = 1 which is 1

2 ,
plus the integral of the function (2 − x) from 1 to t is to be computed. That is,

1
2

+ ∫
t

1
(2 − x)dx = 1

2
+ [2x − x2

2
]
t

1
= −1 + 2t − t2

2
.

When t is above 2, the total integral is one. Hence we have

F(t) =

{{{{{{
{{{{{{
{

0, −∞ < t < 0
t2
2 , 0 ≤ t < 1
−1 + 2t − t2

2 , 1 ≤ t < 2
1, t ≥ 2.

The student is asked to draw the graphs of the distribution function in these two den-
sity functions.
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3.2.1 Axioms for a distribution function

If we have a discrete or continuous random variable, the distribution function is
F(t) = Pr{x ≤ t}. Without reference to a random variable x, one can define F(t) by
using the following axioms:
(i) F(−∞) = 0;
(ii) F(∞) = 1;
(iii) F(a) ≤ F(b) for all a < b;
(iv) F(t) is right continuous.

Thus F(t) is a monotonically non-decreasing (either it increases steadily or it remains
steady for some time) function from zero to 1 when t varies from −∞ to∞. The student
may verify that conditions (i) to (iv) above are satisfied by all the distribution functions
that we considered so far.

3.2.2 Mixed cases

Sometime we may have a random variable where part of the probability mass is dis-
tributed on some individually distinct points (discrete case) but the remaining proba-
bility is distributed over a continuum of points (continuous case). Such random vari-
ables are calledmixed cases. We will list one example here, fromwhere it will be clear
how to handle such cases.

Example 3.7. Compute the distribution function for the following probability func-
tion for a mixed case:

f (x) =
{{{
{{{
{

1
2 , x = −2
x, 0 ≤ x ≤ 1
0, otherwise.

Solution 3.7. The definition for the distribution function remains the same whether
the variable is discrete, continuous or mixed:

F(t) = Pr{x ≤ t}.

For −∞ < t < −2, obviously F(t) = 0. There is a jump of 1
2 at t = −2 and then it remains

the same until 1. In the interval [0, 1], the function is x and its integral is

∫
t

0
xdx = [x

2

2
]
t

0
= t2

2
.

For t greater than 1, the total probability 1 is attained. Therefore, we have
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F(t) =

{{{{{{
{{{{{{
{

0, −∞ < t < −2
1
2 , −2 ≤ t < 0
1
2 + t2

2 , 0 ≤ t < 1
1, t ≥ 1.

The graph will look like that in Figure 3.7.

Figure 3.7: The distribution function for a mixed
case.

Note that for t up to 0 it is a step function then the remaining part is a continuous
curve until 1 and then it remains steady at the final value 1.

Example 3.8. Compute the probabilities (i) Pr{−2 ≤ x ≤ 1}, (ii) Pr{0 ≤ x ≤ 1.7} for the
probability function

f (x) =

{{{{{{{{{
{{{{{{{{{
{

0.2, x = −1,
0.3, x = 0,
0.3, x = 1.5,
0.2, x = 2,
0, otherwise.

Solution 3.8. In the discrete case, the probabilities are added up from those at indi-
vidual points. When −2 ≤ x ≤ 1, the probabilities in this interval are 0, 0.2 at x = −1 and
0.3 at x = 0. Therefore, the answer to (i) is 0+0.2+0.3 = 0.5.When 0 ≤ x ≤ 1.7, the prob-
abilities are 0, 0.3 at x = 0 and0.3 at x = 1.5.Hence the answer to (ii) is 0+0.3+0.3 = 0.6.

In the discrete case, the probability that x falls in a certain interval is the sum of
the probabilities from the corresponding distinct pointswith non-zero probabilities
falling in that interval.

Example 3.9. Compute the following probabilities on the waiting time t, (i) Pr{0 ≤
t ≤ 2}, (ii) Pr{3 ≤ t ≤ 10} if the waiting time has an exponential density with the param-
eter θ = 5.

Solution 3.9. The waiting time having an exponential density with parameter θ = 5
means that the density of t is given by

f (t) =
{
{
{

1
5e
− t5 , 0 ≤ t < ∞

0, elsewhere.
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Probabilities are the areas under the density curve between the corresponding ordi-
nates or the integral of the density over the given interval. Hence for (i) the probability
is given by

∫
2

0

1
5
e−

t
5 dt = [−e−

t
5 ]20 = 1 − e−

2
5 .

In a similar manner, the probability for (ii) is given by

∫
10

3
f (t)dt = [−e−

t
5 ]103 = e−

3
5 − e−

10
5 .

The following shaded areas in Figure 3.8 are the probabilities.

Figure 3.8: Probabilities in the exponential density.

In a continuous case, the probability of the variable x falling in a certain interval
[a,b] is the area under the density curve over the interval [a,b] or between the or-
dinates at x = a and x = b.

Exercises 3.2
3.2.1. Check whether the following are probability functions for some discrete ran-
dom variables:

f1(x) =
{{{
{{{
{

1
2 , x = −1
1
2 , x = 1
0, elsewhere;

f2(x) =
{{{
{{{
{

2, x = 2
3

1, x = 1
3

0, elsewhere.

f3(x) =
{{{
{{{
{

1.2, x = 0
−0.2, x = 1
0, elsewhere;

f4(x) =
{{{
{{{
{

0.8, x = 1
0.3, x = 2
0, otherwise.

3.2.2. Check whether the following are density functions for some continuous ran-
dom variables:

f1(x) =
{
{
{

c(x2 + 3x + 1), 0 ≤ x ≤ 2
0, otherwise;
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f2(x) =
{
{
{

c
x2 , 1 ≤ x < ∞

0, otherwise;

f3(x) = ce−β|x|, −∞ < x < ∞;

f4(x) =
{{{
{{{
{

cx2, 0 < x < 2
6 − x, 2 ≤ x ≤ 6
0, otherwise.

3.2.3. An unbiased coin is tossed several times. If x denotes the number of heads in
the outcomes, construct the probability function of x when the coin is tossed (i) once;
(ii) two times; (iii) five times.

3.2.4. In a multiple choice examination, there are 8 questions and each question is
supplied with 3 possible answers of which one is the correct answer to the question.
A student, who does not know any of the correct answers, is answering the questions
by picking the answers at random. Let x be the number of correct answers. Construct
the probability function of x.

3.2.5. In Exercise 3.2.4, let x be the number of trials (answering the questions) at
which the first correct answer is obtained, such as the third (x = 3) question answered
is the first correct answer. Construct the probability function of x.

3.2.6. In Exercise 3.2.4, let the x-th trial resulted in the 3rd correct answer. Construct
the probability function of x.

3.2.7. Compute the distribution function for each probability function in Exercise 3.2.1
and draw the corresponding graphs.

3.2.8. Compute thedistribution function for eachprobability function inExercise 3.2.2
and draw the corresponding graphs also.

3.2.9. Compute the distribution functions and draw the graphs in Exercises 3.2.3–
3.2.6.

3.2.10. For the following mixed case, compute the distribution function:

f (x) =

{{{{{{
{{{{{{
{

1
4 , x = −5
x, 0 < x < 1,
1
4 , x = 5
0, otherwise.

3.2.11. In Exercise 3.2.2, compute the following probabilities: (i) Pr{1 ≤ x ≤ 1.5} for
f1(x); (ii) Pr{2 ≤ x ≤ 5} for f2(x); (iii) Pr{−2 ≤ x ≤ 2} for f3(x); (iv) Pr{1.5 ≤ x ≤ 3} for f4(x).

3.2.12. In Exercises 3.2.4 and 3.2.5, compute the probability for 2 ≤ x ≤ 5, and in Exer-
cise 3.2.6 compute the probability for 4 ≤ x ≤ 7.
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Note 3.1. For a full discussion of statistical densities andprobability functions in com-
mon use, we need some standard series such as binomial series, logarithmic series,
exponential series, etc.Wewillmention these brieflyhere. Thosewhoare familiarwith
these may skip this section and go directly to the next chapter.

3.3 Some commonly used series

The following power series can be obtained by using the following procedure when
the function is differentiable. Let f (x) be differentiable countably infinite number of
times and let it admit a power series expansion

f (x) = a0 + a1x + a2x2 + ⋯ + anxn + ⋯

then the coefficient

an =
[ dn
dxn f (x)|x=0]

n!

or the series is

f (x) = f (0) + f (1)(0)
1!

x + f (2)(0)
2!

x2 + ⋯ (3.7)

where f (r)(0) means to differentiate f (x), r times and then evaluate at x = 0. All of the
following series are derived by using the same procedure.

3.3.1 Exponential series

ex = 1 + x
1!

+ x2

2!
+ ⋯ + xr

r!
+ ⋯ for all x. (3.8)

e−x = 1 − x
1!

+ x2

2!
− ⋯ + (−1)r x

r

r!
+ ⋯ for all x. (3.9)

3.3.2 Logarithmic series

Logarithm to the base e is called the natural logarithms and it is denoted by ln.

ln(1 + x) = x − x2

2
+ x3

3
− ⋯ for |x| < 1. (3.10)

For the convergence of the series, we need the condition |x| < 1:

ln(1 − x) = −[x +
x2

2
+
x3

3
+ ⋯], |x| < 1. (3.11)
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3.3.3 Binomial series

The students are familiar with the binomial expansions for positive integer values,
which can also be obtained by direct repeated multiplications, and the general result
can be established by the method of induction:

(1 + x)2 = 1 + 2x + x2; (a + b)2 = a2 + 2ab + b2;
(1 + x)3 = 1 + 3x + 3x2 + x3; (a + b)3 = a3 + 3a2b + 3ab2 + b3;

(1 + x)n = (
n
0
) + (

n
1
)x + ⋯ + (

n
n
)xn, n = 1, 2,… ; (3.12)

(a + b)n = (
n
0
)anb0 + (

n
1
)an−1b + ⋯ + (

n
n
)a0bn,

n = 1, 2,… .

What happens if the exponent is not a positive integer, if the exponent is something
like 1

2 ,−20,−
3
2 or somegeneral rational number α (alpha)?Wecanderive an expansion

by using (3.7). Various forms of these are given below:

(1 − x)−α = 1 + (α)1
1!

x + (α)2
2!

x2 + ⋯ + (α)r
r!

xr + ⋯, |x| < 1. (3.13)

If α is not a negative integer, then we need the condition |x| < 1 for the convergence of
the series. The Pochhammer symbol is

(α)r = α(α + 1)⋯(α + r − 1), α ≠ 0, (α)0 = 1. (3.14)

Various forms of (3.13) can be obtained by replacing x by −x and α by −α. For the sake
of completeness, these will be listed here for ready reference:

(1 + x)−α = [1 − (−x)]−α = 1 − (α)1
1!

x +
(α)2
2!

x2 − ⋯, |x| < 1. (3.15)

(1 − x)α = (1 − x)−(−α) = 1 + (−α)1
1!

x +
(−α)2
2!

x2 + ⋯,

for |x| < 1. (3.16)

(1 + x)α = [1 − (−x)]−(−α) = 1 − (−α)1
1!

x + (−α)2
2!

x2 − ⋯, (3.17)

for |x| < 1. In all cases, the condition |x| < 1 is needed for the convergence of the series
except in the casewhen the exponent is a positive integer.When the exponent is α > 0,
then the coefficient of xr

r! is (−α)r . If α is a positive integer, then this Pochhammer sym-
bol will be zero for some r and the series will terminate into a polynomial, and hence
the question of convergence does not arise. We have used the form (1 ± x)±α. This is
general enough because if we have a form

(a ± b)±α = a±α(1 ± b
a
)
±α
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and thus we can convert to the form (1 ± x) by taking out a or b to make the resulting
series convergent.

3.3.4 Trigonometric series

sinx = x − x3

3!
+ x5

5!
− ⋯

cosx = 1 − x2

2!
+ x4

4!
− ⋯

eix = cosx + i sinx, i = √−1.

3.3.5 A note on logarithms

The mathematical statement

ax = b

can be stated as the exponent x is the logarithm of b to the base a. For example, 23 = 8
can be written as 3 (the exponent) is the logarithm of 8 to the base 2. The definition
is restricted to b being strictly a positive quantity when real or logarithm of negative
quantities or zero is not defined in the real case. The standard notations used are the
following:

logb ≡ log10 b or common logarithm or logarithm to the base 10. When we say
“log y”, it is a logarithm of y to be base 10.

lnb ≡ loge b or natural logarithm or logarithm to the base e. When we say “ln y”,
it is a logarithm of y to be base e.

For all other bases, other than 10 or e, write the base and write it as loga b. This
note is given here because the students usually do not know the distinction between
the notations “log” and “ln”. For example,

d
dx

lnx = 1
x
, d

dx
logx = 1

x
log10 e ≠ 1

x
.

Note 3.2. In Section 3.2.1,wehave given an axiomatic definition of a distribution func-
tion and we defined a random variable with the help of the distribution function. Let
us denote the distribution function associated with a random variable x by F(x). If
F(x) is differentiable at an arbitrary point x, then let us denote the derivative by f (x).
That is, d

dxF(x) = f (x), which will also indicate that

F(x) = ∫
x

−∞
f (t)dt.
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In this situation, we call F(x) an absolutely continuous distribution function. Abso-
lute continuity is related to more general measures and integrals known as Lebesgue
integrals. For the time being, if you come across the phrase “absolutely continuous
distribution function”, then assume that F(x) is differentiable and its derivative is the
density f (x).

Note 3.3. Suppose that a density function f (x) has non-zero part over the interval
[a,b] and zero outside this interval. When x is continuous, then the probability that
x = a, that is, Pr{x = a} = 0 and Pr{x = b} = 0. Then the students have the confusion
whether f (x) should be written as non-zero in a ≤ x ≤ b or a < x ≤ b or a ≤ x < b or
a < x < b. Should we include the boundary points x = a and x = b with the non-zero
part of the density or with the zero part? For example, if we write an exponential den-
sity:

f (x) =
{
{
{

1
θe
− xθ , θ > 0, 0 ≤ x < ∞

0, elsewhere

should we write 0 < x < ∞ or 0 ≤ x < ∞. Note that if we are computing only probabil-
ities then it will not make any difference. But if we are looking for a mode, then the
function has a mode at x = 0 and if x = 0 is not included in the non-zero part of the
density, then naturallywe cannot evaluate themode. For estimation of the parameters
also, we may have similar problems. For example, if we consider a uniform density

f (x) =
{
{
{

1
b−a , a ≤ x ≤ b
0, elsewhere

then what is known as maximum likelihood estimates [discussed in Module 7] for the
parameters a and b do not exist if the end points are not included. That is, if the non-
zero part of the density is written as a < x < b, then themaximum likelihood estimates
for a and b do not exist. Hence when writing the non-zero part of the density include
the end points of the interval where the function is non-zero.

Note 3.4. Note thatwhena randomvariables x is continuous, then the followingprob-
ability statements are equivalent:

Pr{a < x < b} = Pr{a ≤ x < b} = Pr{a < x ≤ b} = Pr{a ≤ x ≤ b}
= F(b) − F(a)

where F(x) is the distribution function. Also when F(x) is absolutely continuous

F(b) − F(a) = ∫
b

a
f (t)dt or d

dx
F(x) = f (x)

where f (x) is the density function.
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Exercises 3.3
3.3.1. By using a binomial expansion show that, for n = 1, 2,…

2n = (n
0
) + (n

1
) + (n

2
) + ⋯ + (n

n
)

0 = (n
0
) − (n

1
) + (n

2
) + ⋯ ± (n

n
)

3.3.2. By using the identity,

(1 + x)m(1 + x)n ≡ (1 + x)m+n

and comparing the coefficient of xr on both sides show that

r
∑
s=0

(
m
s
)(

n
r − s

) = (
m + n
r

) , m,n = 1, 2,… .

3.3.3. By using the identity,

(1 + x)n1 (1 + x)n2 ⋯(1 + x)nk ≡ (1 + x)n1+⋯+nk

and comparing the coefficient of xr on both sides show that

∑
r1

⋯∑
rk

(
n1
r1

)(
n2
r2

)⋯(
nk
rk

) = (
n
r
)

where r = r1 + ⋯ + rk , n = n1 + ⋯ + nk , nj = 1, 2,…, j = 1,… ,k.

3.3.4. Show that
n
∑
m=1

m = n(n + 1)
2

;
n
∑
m=1

m2 = n(n + 1)(2n + 1)
6

;

n
∑
m=1

m3 = [n(n + 1)
2

]
2
.

3.3.5. Compute the sums ∑n
m=1m

4; ∑n
m=1m

5; ∑n
m=1m

p, p = 6,7,….

3.3.6. Show that

a + ar + ar2 + ⋯ + arn−1 = a (1 − rn)
1 − r

, r ≠ 1;

a + ar + ar2 + ⋯ = a
∞

∑
n=0

rn = a
1 − r

, for |r| < 1.

3.3.7. What is the infinite sum in Exercise 3.3.6 for (i) r = 1; (ii) r = −1; (iii) r > 1;
(iv) r < −1.
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3.3.8. Evaluate the sum ∑∞x=k (x−1k−1 )pkqx−k , q = 1 − p, 0 < p < 1.

3.3.9. Evaluate the sum ∑n
x=0 (nx )pxetxqn−x , q = 1 − p, 0 < p < 1.

3.3.10. Compute the sum ∑∞x=k (x−1k−1 )pketxqx−k , q = 1 − p, 0 < p < 1.




