Contents

Introduction — V

1 Modulus of continuity of the inverse operator and methods for solving ill-posed problems — 1
1.1 Modulus of continuity and its properties — 1
1.2 The concept of the method for solving an ill-posed problem — 11

2 Lavrent’ev methods for constructing approximate solutions of linear operator equations of the first kind — 15
2.1 On the accuracy of the Lavrent’ev method with the regularization parameter chosen based on the Strakhov scheme — 15
2.2 On the accuracy of the Lavrent’ev method with the choice of the regularization parameter based on the Lavrent’ev scheme — 21
2.3 Application of the method to the solution of the inverse Cauchy problem for the heat conduction equation — 26

3 Tikhonov regularization method — 31
3.1 A linear version of the Tikhonov regularization method — 31
3.2 A study of the variational problem (3.2) with a parameter α selected based on the residual principle — 37
3.3 Residual method — 41
3.4 The error estimate for the Tikhonov regularization method with parameter α, selected by the residual principle — 52
3.5 On solving an inverse problem in solid state physics with the Tikhonov regularization method — 55

4 Projection-regularization method — 65
4.1 Posing of the problem of unbounded operator values and the projection-regularization method — 65
4.2 Isometry of the Fourier transform on the space $L^2(0, \infty)$ — 73

5 Inverse heat exchange problems — 77
5.1 A study of the inverse boundary-value problem for the heat conduction equation with a constant coefficient — 77
5.2 On the accuracy estimation of the approximate solution of an inverse boundary-value problem for a heat conduction equation with a constant coefficient — 86
5.3 A study of the solution to a direct boundary-value problem for the heat conduction equation with a variable coefficient — 102
5.4 On estimating the approximate accuracy of a solution to the inverse boundary-value problem for the heat conduction equation with a variable coefficient — 111

References — 123

Index — 129