Contents

Preface — V
Abstract — VI

1 Introduction — 1

2 Generals in statics and dynamics of global atmosphere — 7
 2.1 Properties of global atmosphere — 7
 2.1.1 Model of standard atmosphere — 7
 2.1.2 Energetic balance for the Earth and its atmosphere — 10
 2.2 Greenhouse molecular components in the atmosphere — 12
 2.2.1 Atmospheric water vapor — 12
 2.2.2 Atmospheric carbon dioxide — 16
 2.3 Evolution of global temperature — 22
 2.3.1 Contemporary variation of global temperature — 22
 2.3.2 Variation of global temperature in past — 25
 2.3.3 Chemical equilibrium between the Earth and atmosphere — 27
 2.4 Dynamics of atmospheric air with microparticles — 30
 2.4.1 Convective motion of atmospheric air — 30
 2.4.2 Transport of water microdrops in convective air — 33

3 Water microdrops in atmospheric air — 37
 3.1 Processes of water condensation in atmospheric air — 37
 3.1.1 Behavior of water microdrops in tropospheric air — 37
 3.1.2 Condition of water condensation in atmospheric air — 42
 3.1.3 Mixing of air streams involving the condensed water phase — 44
 3.2 Character of water condensation in atmospheric air — 45
 3.2.1 Mechanisms of drop growth in air — 45
 3.2.2 Growth of water drops due to coagulation and coalescence — 49
 3.2.3 Gravitation mechanism of growth of water drops — 56
 3.3 Water circulation between the Earth and atmosphere — 59
 3.3.1 Character of water circulation through atmosphere — 59
 3.3.2 Electric properties of water drops of cumulus cloud — 61
 3.3.3 Processes of transformation of water drops in rain — 64
 3.3.4 Kinetics of atmospheric electricity — 68

4 Thermodynamics of thermal atmospheric emission — 71
 4.1 Radiation of flat layer — 71
 4.1.1 Radiation in uniform gas — 71
 4.1.2 Emission from flat gaseous layer — 73
4.2 Character of thermal atmospheric emission — 77
 4.2.1 Emission of atmosphere as flat gaseous layer — 77
 4.2.2 Model of frequency-independent absorption — 80
 4.2.3 Atmospheric thermal radiation from thermodynamic standpoint — 82
 4.2.4 Distribution over optical thicknesses — 85
4.3 Water microdrops in atmospheric emission — 86
 4.3.1 Model of average atmospheric absorption — 86
 4.3.2 Absorption by small water drops — 90
 4.3.3 Water microdrops as atmospheric radiators — 96

5 Spectroscopy properties of radiative atmospheric molecules — 101
 5.1 Radiative processes involving CO₂ molecules — 101
 5.1.1 Infrared spectroscopy of CO₂ molecules — 101
 5.1.2 Regular model for the absorption coefficient due to linear molecules — 106
 5.1.3 Data of HITRAN bank in evaluation of absorption coefficient due to CO₂ molecules — 112
 5.1.4 Infrared resonant radiation of CO₂ molecules — 116
 5.2 Absorption by atmospheric water — 118
 5.2.1 Absorption cross section due to atmospheric water molecules — 118

Part 2: Greenhouse phenomenon of standard atmosphere

6 Infrared radiative energetics of standard atmosphere — 125
 6.1 Emission due to water molecules — 125
 6.1.1 Models of infrared atmospheric emission — 125
 6.1.2 Emission of atmospheric water molecules at low frequencies — 129
 6.1.3 Water molecules as the main atmospheric radiator at low frequencies — 134
 6.2 Infrared emission of the atmosphere with participation of CO₂ molecules — 137
 6.2.1 Atmospheric emission in the transition frequency range (580 – 700) cm⁻¹ — 137
 6.2.2 Atmospheric emission in the frequency range (700 – 800) cm⁻¹ — 141

7 Shortwave infrared atmospheric emission — 149
 7.1 Infrared atmospheric emission of water and carbon dioxide molecules at large frequencies — 149
 7.1.1 Atmospheric emission in the frequency range (800 – 1000) cm⁻¹ — 149
 7.1.2 Atmospheric emission in the frequency range (1000 – 1100) cm⁻¹ — 151
 7.1.3 Model of single spectral lines — 152
7.1.4 Atmospheric emission due to resonant vibration transition of CO_2 molecules — 156

7.2 Trace gases in atmospheric radiation — 159
7.2.1 Emission of atmospheric methane — 159
7.2.2 Emission of atmospheric nitrogen dioxide — 163
7.2.3 Infrared radiative fluxes for standard atmosphere — 169

8 Emission of a varied atmosphere — 173
8.1 Atmospheric emission at variation of greenhouse components — 173
8.1.1 Models of interaction between radiating components in a varied atmosphere — 173
8.1.2 Atmospheric emission at doubled concentration of carbon dioxide — 176
8.1.3 Radiative flux depending of concentration of radiating molecules — 182
8.2 Connection between global temperature and global energy fluxes — 185
8.2.1 Climate sensitivity due to radiation — 185
8.2.2 Climate sensitivity of the Earth and atmosphere — 187
8.2.3 Temporary changes of atmospheric fluxes — 192
8.3 Water condensed phase in atmospheric processes — 194
8.3.1 Power of outgoing atmospheric radiation — 194
8.3.2 Radiative water microdrops in the atmosphere — 196
8.3.3 Role of water microdrops in electrical and optical properties of the atmosphere — 200

9 Peculiarities of emission in atmospheric energetics — 203
9.1 Atmosphere as a media for transport of infrared radiation — 203
9.1.1 Model of standard atmosphere in its emission — 203
9.1.2 Weather of megalopolises — 205
9.1.3 Hydroelectric plants and greenhouse effect — 209
9.2 The problem of atmospheric carbon dioxide — 211
9.2.1 Correlation between carbon dioxide and global temperature — 211
9.2.2 Global deforestation — 212
9.2.3 World energetics in growth of atmospheric carbon dioxide — 215
9.3 Change of the Earth’s climate — 219
9.3.1 Solar variations related to climate — 219
9.3.2 Particle emission in climate change — 221
9.3.3 Cosmic rays and climate — 224
9.3.4 Paris agreements and climate change — 225
XII Contents

10 Conclusion — 227

Bibliography — 229

Subject Index — 241

List of Figures — 243