
Preface

The idea to write this book arose from a lecture that Michael was giving at the Tech-
nical University Munich. You know, just for the fun of it. The lecture was called “Par-
allel Programming Systems” and taught students the basics of how to bring a parallel
programming model to a parallel machine. Exactly the topic of this book. What a co-
incidence!

The topic of parallel runtime systems is a really interesting one. Our day jobs are
to work on all sorts of performance questions and low-level machine details on vari-
ous processors. However, thinking about performance in an application code is quite
different from thinking about performance at the lower levels of a software stack and
inside a runtime library that supports a parallel programmingmodel. Manymore ma-
chinedetails are exposedat this low level andmust be taken into accountwhenaiming
for the highest possible performance.

After the first couple of series of said lecture, it seemed that the students were
really interested in the low-level stuff that Michael was teaching them, so he felt it
would be a good idea to move to the next level and write a book! With Jim joining
the team of authors, we were ready to write the book. In addition to his many years
of experience, Jim brought his extensive knowledge of parallelism and his interest in
low-level machine details to the table.

We hope that you’ll like the topic as much as we do. It has certainly been fun writ-
ing this fine piece of text (and the accompanying code), and we hope that you will
enjoy reading it. We use many code examples and figures to illustrate the concepts
and to help you to understand the details of how to write critical parts of the runtime
system.Most of these code sampleswill be inC andC++,with someassembly language
where we need it to demonstrate what modern compilers do to your source code.

Fortran programmers, or adepts of other languages: don’t feel left out; there is still
a lot that you can take away from these discussions, and you will certainly be able to
translate the key concepts into your language of choice. Our choice of C/C++ is not
because we consider other languages uninteresting or irrelevant, but rather because
we are considering implementation details that are very close to the machine, where
C and C++ are still the dominant languages nomatter which language the higher-level
user code is written in. So please keep an open mind, even if the trouble with having
an open mind is that people will insist on coming along and trying to put things in it.

We would like to thank our publisher, De Gruyter, for accepting the book into
their portfolio and their patience while we were busy working on the book. We
would like to thank Ute Skambraks at De Gruyter who worked with us patiently to
prepare the manuscript. We would also like to express our gratitude to the review-
ers who read the early versions of the book and did not run away screaming. They
are Mark Bull, Barbara Chapman, Florina M. Ciorba, Chris Dahnken, Alex Duran,
Wooyoung Kim, Will Lovett, Larry Meadows, Jennifer Pittman, Carsten Trinitis, and

https://doi.org/10.1515/9783110632729-202



X | Preface

Terry Wilmarth. Others who deserve thanks are our proofreader, Matthew Robert-
son (https://checkmatteditorial.com), and Randall Munroe, creator of the wonderful
https://xkcd.com, for giving us permission to use one of his creations. Of course,
all errors that still exist in the book are ours. Finally, this work used the Isambard
UK National Tier-2 HPC Service (http://gw4.ac.uk/isambard/) operated by GW4 and
the UK Met Office, and funded by EPSRC (EP/P020224/1), and some machines at the
University of Bristol, who all deserve special thanks.

Now, without any further ado, please enjoy the book!

Michael & Jim


