Bernreuther, Marco, Müller, Georg and Volkwein, Stefan. "1 Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE".
Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization, edited by Roland Herzog, Matthias Heinkenschloss, Dante Kalise, Georg Stadler and Emmanuel Trélat, Berlin, Boston: De Gruyter, 2022, pp. 1-32.
https://doi.org/10.1515/9783110695984-001
Bernreuther, M., Müller, G. & Volkwein, S. (2022). 1 Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE. In R. Herzog, M. Heinkenschloss, D. Kalise, G. Stadler & E. Trélat (Ed.),
Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization (pp. 1-32). Berlin, Boston: De Gruyter.
https://doi.org/10.1515/9783110695984-001
Bernreuther, M., Müller, G. and Volkwein, S. 2022. 1 Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE. In: Herzog, R., Heinkenschloss, M., Kalise, D., Stadler, G. and Trélat, E. ed.
Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin, Boston: De Gruyter, pp. 1-32.
https://doi.org/10.1515/9783110695984-001
Bernreuther, Marco, Müller, Georg and Volkwein, Stefan. "1 Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE" In
Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization edited by Roland Herzog, Matthias Heinkenschloss, Dante Kalise, Georg Stadler and Emmanuel Trélat, 1-32. Berlin, Boston: De Gruyter, 2022.
https://doi.org/10.1515/9783110695984-001
Bernreuther M, Müller G, Volkwein S. 1 Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE. In: Herzog R, Heinkenschloss M, Kalise D, Stadler G, Trélat E (ed.)
Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin, Boston: De Gruyter; 2022. p.1-32.
https://doi.org/10.1515/9783110695984-001
Copied to clipboard