Bottois, Arthur. "2 Pointwise moving control for the 1-D wave equation".
Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization, edited by Roland Herzog, Matthias Heinkenschloss, Dante Kalise, Georg Stadler and Emmanuel Trélat, Berlin, Boston: De Gruyter, 2022, pp. 33-58.
https://doi.org/10.1515/9783110695984-002
Bottois, A. (2022). 2 Pointwise moving control for the 1-D wave equation. In R. Herzog, M. Heinkenschloss, D. Kalise, G. Stadler & E. Trélat (Ed.),
Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization (pp. 33-58). Berlin, Boston: De Gruyter.
https://doi.org/10.1515/9783110695984-002
Bottois, A. 2022. 2 Pointwise moving control for the 1-D wave equation. In: Herzog, R., Heinkenschloss, M., Kalise, D., Stadler, G. and Trélat, E. ed.
Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin, Boston: De Gruyter, pp. 33-58.
https://doi.org/10.1515/9783110695984-002
Bottois, Arthur. "2 Pointwise moving control for the 1-D wave equation" In
Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization edited by Roland Herzog, Matthias Heinkenschloss, Dante Kalise, Georg Stadler and Emmanuel Trélat, 33-58. Berlin, Boston: De Gruyter, 2022.
https://doi.org/10.1515/9783110695984-002
Bottois A. 2 Pointwise moving control for the 1-D wave equation. In: Herzog R, Heinkenschloss M, Kalise D, Stadler G, Trélat E (ed.)
Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin, Boston: De Gruyter; 2022. p.33-58.
https://doi.org/10.1515/9783110695984-002
Copied to clipboard