CONTENTS:

A. Nowicki
Hermitean Oscillator-like Realizations of Classical Algebras and Superalgebras in Hilbert Space with Positive Definite Metric 649—673

A. Cabo
On the Bosonization of the Many Electron Problem 675—685
Instructions to Authors

1. Only papers not published and not submitted for publication elsewhere will be accepted.
2. Manuscripts should be submitted in English, with an abstract in English. Two copies are desired.
3. Manuscripts should be no less than 30 and preferably no more than about 100 pages in length.
4. All manuscripts should be typewritten on one side only, double-spaced and with a margin 4 cm wide. Manuscript sheets should be numerated consecutively from “1” onwards. Footnotes should be avoided.
5. The title of the paper should be followed by the authors name (with first name abbreviated), by the institution and its address from which the manuscript originates.
6. Figures and tables should be restricted to the minimum needed to clarify the text. They should be numbered consecutively and must be referred too in the text and on the margin. Figures and tables should be added to the manuscript on separate, consecutively numerated sheets. The tables should have a headline. Legends of figures should be submitted on a separate sheet. All figures should bear the author's name and number of figure overleaf. Photographs for half-tone reproduction should be in the form of highly glazed prints. Line drawings should be in a form suitable for reproduction. The lettering should be sufficiently large and bold to permit reduction. If requested, original drawings and photographs will be returned to the author upon publication of the paper.
7. Formulae should not be written to small and not with pencil. Separate lines for formulae are desirable. SI-units should be used. Letters in formulae are normally printed in italics, numbers in ordinary upright typeface. Underlining to denote special typefaces should be done in accordance with the following code:
 - Italics: wavy underlined with pencil (only necessary for type written symbols in the text)
 - Boldface italics (vectors): straight forward and wavy underlined
 - Upright letters (all abbreviations like all units (cm, g, ...), all elements and particles (H, He, ..., n, p, ...), elementary mathematical functions like Re, Im, sin, cos, exp, ...): black underlined
 - Greek letters: red underlined
 - Boldface Greek letters: red interlined twice
 - Upright Greek letters (symbols of elementary particles): red and black underlined
 - Large letters: underlined with pencil twice
 - Small letters: overlined with pencil twice
 (This will be necessary for handwritten letters that do not differ in shape, as a C, k X, o O, p P, e S, u U, v V, w W, x X, y Y, z Z).
 It will help the printer if position of subscripts and superscripts is marked with pencil in the following way: a\textsubscript{1}, b1, M\textsubscript{1}, M1, W\textsubscript{1}
 Please differentiate between following symbols: a, \alpha, \infty; a, j; c, O, C; c, l; \xi, \epsilon; k, K, x; x, X, X; \times; l; o, O, \sigma, \rho; p, \varphi, \phi, \Theta; \delta, \partial, \theta.
8. Each paper should be followed by a list of references with consecutive numeration. The numbers should be placed on the line between squared brackets or typewritten inclined lines. Articles in journals should be cited with author's name and abbreviated first name, title of journal volume number (underlined), year of publication (in brackets) and page number. In case of books author's name and abbreviated first name, title, place, and year of publication should be given.
9. Manuscripts should be submitted fit for printing; badly arranged manuscripts are returned.
10. Proof reading should be limited to the correction of typographical errors. Deletions and insertions are not permitted in proof reading.
11. Of every paper published the author(s) will receive 30 reprints free of charge.
12. Within the framework of legal protection the publishers have the right of publication, distribution and translation reserved. Without express permission it is not allowed to produce photocopies, microfilms etc. of this journal or parts of it.
Hermitean Oscillator-like Realizations of Classical Algebras and Superalgebras in Hilbert Space with Positive Definite Metric

ANATOL NOWICKI*)

International Centre for Theoretical Physics, Trieste, Italy

Abstract

The hermitean oscillator-like realizations of classical algebras in terms of bosonic and fermionic creation and annihilation operators are given. The hermitean realizations of classical superalgebras using boson-fermion oscillators are explicitly described. The assumption of positive definite metric in a Hilbert space of the oscillators states is exploited. Due to this fact, the realizations of superalgebras in the Hilbert space can be constructed only for: the real orthosymplectic superalgebra \(\text{osp}(N; 2M; R) \); the unitary compact superalgebra \(\text{su}(N; M) \); the unitary noncompact one \(\text{SU}(N; K, M) \); and the quaternionic unitary superalgebra \(\text{uu}_4(N; M; H) \).

1. Introduction

In the last decade, we observe increasing interest in application of the supersymmetry methods as the investigation tools in the theory of fundamental interactions as well as in nuclear physics.

The classification of supersymmetry algebras has been given by Kac [1, 2] which contains all complex finite-dimensional simple Lie superalgebras. Following [1, 2] the classical Lie superalgebras (i.e. simple Lie superalgebras whose Lie subalgebra is reductive) can be divided into four classes:

a) standard classical Lie superalgebras \(A(n, m), B(n, m), C(n) \) and \(D(n, m) \);
b) exceptional Lie superalgebras \(F(4), G(3) \);
c) strange Lie superalgebras \(P(n), Q(n) \);
d) one-parameter family of deformations of \(D(2, 1) \) denoted by \(D(2, 1; \alpha) \).

The standard classical Lie superalgebras are supersymmetric analogues of Cartan classical Lie algebras. The classification of real forms of classical Lie superalgebras are given in [3].

Recently, the realizations of supersymmetry algebras using the oscillator operators was proposed. It is connected with the problem of bosonization of the fermionic systems [4, 5] as well as the description of unitary irreducible representations of noncompact supersymmetries [6—8].

By the oscillator method, using bosonic and fermionic oscillators there were constructed unitary irreducible representations of:

i) anti-de Sitter superalgebra \(\text{osp}(2; 4; R) \) in [9];
ii) extended anti-de Sitter superalgebra \(\text{osp}(N; 4; R) \) in [10];

*) On leave of absence from Institute of Teacher's Training-ODN, 50-527 Wroclaw, ul. Dawida 1a, Poland.