Introduction

Until recently, Helmuth Plessner’s work has hardly played any substantial role in the philosophy of technology. The only two exceptions are the work of two Dutch philosophers of technology, Petran Kockelkoren (2003) and Jos de Mul (2003), who investigated Plessner’s concept of mediation and eccentricity, respectively, with regards to technology. While Kockelkoren founded the contemporary approach of technological mediation in Plessner’s anthropology, De Mul expanded Plessner’s concept of eccentricity into ‘poly-eccentricity,’ in order to do justice to the new ways of being-in-the-world made possible by information technologies.

In this chapter, I will take this discussion a step further. First, I will sketch the account of human-technology relations in the history of philosophical anthropology. This will provide a context for taking up some of Plessner’s ideas in philosophy of technology. Second, I will discuss how Plessner’s framework sheds a new light on technology and the mediating role of technologies in human existence. Finally, I will investigate if and how Plessner’s theory can help to analyse contemporary technological developments that are often understood in terms of ‘human enhancement’ or even ‘posthumanism.’ Do we need to expand his theory in order to make sense of the newest technologies, or does his original work still apply on its own? Can Plessner’s anthropology help us conceptualize how technology takes us beyond the human? Or does his work rather urge us to see ‘posthumanism’ as a necessary ingredient of being human?

This chapter is a revised and expanded version of a chapter in my Dutch book De grens van de mens: over techniek, ethiek en de menselijke natuur (Rotterdam: Lemniscaat, 2011), translated from the Dutch by Hermien Lankhorst.
Philosophical anthropology and technology

Philosophical anthropology – the discipline of philosophy that is concerned with understanding the human being – can be seen as the philosophical answer to the new ways in which humans were being approached by biology and the behavioral sciences at the start of the past century. New developments, such as the theory of evolution, psychoanalysis and behaviorism, all questioned the manner in which ‘man’ was understood traditionally. All of a sudden, these emerging new approaches labelled humans as part of the animal kingdom, as a thin film of ‘I’ on a swirling mash of unconscious wishes and desires, or as a stimulus-response machine. As a result, the philosophical question of what it means to be human resurfaced. In light of all these new attitudes, how should the human be understood?

We are currently facing similar circumstances, albeit not through developments in science but in technology. Many new possibilities have emerged to intervene in human nature: psychopharmaceuticals, tissue regeneration, intelligent prostheses, brain implants, and many more. All these developments raise the question anew about what human nature is and where the limits of humanity lie. In the first wave of philosophical-anthropological theories, the focus lied on defining distinctive boundaries between human beings and animals. The animal, which shows instinctual behavior, stands in opposition to man, who acts freely, gives meaning to the world and shapes his or her own existence. Oddly enough however, the technique has always played a large role in philosophical anthropology as well. Philosophical anthropologists like Ernst Kapp, Hermann Schmidt and Arnold Gehlen were all fascinated by the relationship between technological artefacts and the human organism. The idea that humans come to this world as imperfect beings that have to survive on their own by using technology has always been a dominating view.

We humans are Mängelwesen (‘imperfect creatures’), as Gehlen expressed it so poignantly in Der Mensch: Seine Natur und seine Stellung in der Welt (1940), invoking Herder. Since we have no specialized organs and instincts, we could never survive in a natural environment. We do not have fur to keep ourselves warm and physically we are neither equipped to protect ourselves nor to obtain food. We have to add something to ourselves to be able to exist – and it is for this reason that the relationship between the human organism and technology has always played an important part in philosophical anthropology.

At the end of the nineteenth century, Ernst Kapp was among the first to take a closer look at the relationship between the human organism and technology. His central thesis in Grundlinien einer Philosophie der Technik (1877) was that of organ projection: technologies are conscious or unconscious projections
of human organs. A hammer is a projection in matter of what the fist is in the organic domain. A saw is a projection of human teeth. The telegraph network – which was being constructed in Kapp's time – is a projection of the central nervous system. Because we, human beings, 'objectify' ourselves in matter, we develop knowledge about ourselves as well. We discover who we are by projecting elements of ourselves in matter, and by subsequently finding out that we are more than just the sum those projections.

Kapp's position comes down to an inversion of the theory that, since the Enlightenment, nature has increasingly been understood in mechanical terms. Kapp does the exact opposite: he thinks the mechanical from the organic, technique from nature. We create a material world of technical objects by externalizing elements of our own organism – and in this way we discover more and more of ourselves in the use of technology.

In the twentieth century, Hermann Schmidt further elaborated the relationship between the organic and the technical. In 'Die Entwicklung der Technik als Phase der Wandlung des Menschen' (1954), Schmidt discerned three stages in the development of technique. The earlier analysis by Kapp relates to the first stage: that of the tool. Here, the necessary power comes from human labour, as well as the intelligence to use the instrument for a specific purpose. The second stage is that of the machine. This derives power from itself, but it still has to be operated by a human being for a certain purpose. Finally, the third stage is that of the automaton, which derives both its physical operation and the purposeful deployment of its machinery from technology. In a way, the human subject has become redundant here, as both physically and intellectually, the automaton has become self-sufficient.

In Beyond the Machine [De machine voorbij, 1992], the Dutch philosopher Maarten Coolen showed that Herman Schmidt also approached technology as an externalization of man, which can serve as a source of self-knowledge. We recognise aspects of ourselves in technology and at the same time we discover that we are more than that alone. The machine embodies the physical use of the tool. The automaton then embodies the purposeful operation of the machine. Subsequently, we human beings, who can relate to machines and automatons, are always more than just the externalized elements of ourselves. We are more than machines, even when parts of ourselves can be understood as a mechanism, and more than automatons, even though we can certainly consider aspects of ourselves as such. Human self-understanding develops itself in the mirror of technology, according to Coolen:

It is my intention to develop a philosophical appreciation of technique in which technological artefacts can be considered to be expressions
of the human mind. Therefore, I am interested in precisely those anthropological ideas that one can associate with the act of technological transformation itself. What can man learn about himself from his own fabrications? (Coolen 1992, 165-166; translation mine)

In the twentieth century, Arnold Gehlen built on the ideas of Schmidt, by raising once more the question of how all these technologies relate to man as an organic being. In his text “A Philosophical-Anthropological Perspective on Technology” (2003, 213), Gehlen distinguishes three relationships between man and technique:

− *Organ replacement* – for example, the hammer that replaces the fist.
− *Organ improvement* – for example, the microscope that enhances the already existing capabilities of the eye.
− *Organ relief* – for example, the wheel that makes it possible to move heavy objects without burdening the body too much.

Here, Gehlen perceives the tendency that the organic is increasingly being replaced by the inorganic. More and more, technology is taking over the place that once belonged to man – and this is a development that could also turn against humans, Gehlen thinks.

The approaches of Kapp, Schmidt and Gehlen all show in their own way the relationship between organic people and non-organic technologies. In the end, however, these positions aren’t adequate. Contemporary technological developments that go beyond the configuration of usage-situations do not fit the frameworks above.

A good example is the technology of *deep brain stimulation* (DBS). This technology stimulates specific parts of the brain with low-voltage electricity in order to achieve an effect on the motor capacities of Parkinson patients, or on the moods and sensations of psychiatric patients. Such brain implants cannot be understood as organ projections – after all, which organ would be projected here? They also go beyond the dialectic of tool-machine-automaton – rather, the hybrid of human and technique that emerges through the implantation of a DBS-device forms a next phase in this development.

This is where the *cyborg* appears: a creature that is part human, part technology (cf. Haraway 1991). A substitution of the organic by the inorganic, Gehlen’s biggest fear, is not the issue here. On the contrary, the organic is absolutely central and merges with the inorganic in order to operate better. While the body functioned as a completely natural boundary between humans and technology in classic philosophical anthropology, that line becomes more fuzzy when it comes to the latest anthropo-technology.
These technologies do not project the body, nor do they complement it; rather they merge with it to become a new hybrid body.

To truly understand this new phase in the relationship between humans and technology, we have to overcome a large conceptual hurdle. The dichotomy of man versus technology, that seems so self-evident to many, just does not fit with the matter at hand. Anthropo-technologies require that we blur the boundary between man and technology, which is an incredibly fundamental boundary. After all, we see ourselves as natural, while technology is artificial – and as a result, we experience the blurring of boundaries as a degradation of our authenticity. However, it appears necessary to consider this distortion of boundaries as part of the human condition.

The distinction between the natural and the technical is very old indeed. The ancient Greeks distinguished technè (technique, craftsmanship) from fysis (nature), both forms of poièsis (creation): while fysis creates itself, technè is interference by humans. A flower blooms by itself, but a building or a painting is made by people. While technique is the work of man, man is not a product of technique.

French philosopher of technology Bernard Stiegler argued in Technics and Time (1998) that it is precisely this distinction between techne and fysis that needs to be reconsidered. Stiegler argues that man has to be seen as a creature that is originally technological, an idea that Pieter Lemmens beautifully developed in Driven by Technology [Gedreven door techniek, 2008]. After all, humans have always technologically interfered in nature, precisely as “defective beings” (Mängelwesen), and thus an ‘artificial’ surrounding emerged in which human development – or evolution, if you like – has taken place.

From the outset, man has been interwoven with technology on an organic level as well. Because of the slow pace of development, this had not been noticed for a long period of time. However, since the emergence of modern technique, the developments have gained momentum and it has become clear how the environment of human existence changes as a result of technology.

What constitutes the humanity of man and lies at the root of the break of the human-animal from the continuity of animal life, Stiegler states [...], is nothing less than a process of technological exteriorisation of life. [...] Man is a creature that, rather than entering the struggle for his existence with his own organs, comes into it with artificial ‘organs’: tools and techniques that are located outside his own biology but on which he nevertheless has become completely dependent for his survival, and so they have become of vital importance for him (Lemmens 2008, 397; translation mine).
This notion of ‘originary technicity’ – by which Stiegler indicates the originally technological character of man – sheds a completely new light on the question of ‘the boundary of man.’ It shows that there has never really been a clear boundary between humans and technique to begin with. As Donna Haraway puts it: “the cyborg is our ontology” (Haraway 1991). The cyborg – the merging of the mechanical and the organic – embodies not the alienation of being human, but in fact shows its fundamental structure. We have never been specimens of ‘man,’ at least not in the sense that we could indicate a primordial condition of humanity from which we could be alienated. What makes us humans is precisely the fact that we continually mould ourselves. In that sense, we have always been cyborgs.

Plessner and technology

This self-designing character of man has been an important theme in twentieth-century philosophy. Heidegger argued in Sein und Zeit (1927) that man, from his ‘thrownness’ (Geworfenheit) into this world, continually ‘designs’ (Entwerft) himself: the fact that we exist comes over us, but the way in which we fill in this existence is an assignment to ourselves, a productive interplay with our thrownness. The existential tradition, too, is based on the idea that man himself is responsible for who he is: humans do not coincide with themselves, but they have freedom, and from this freedom their existence is not simply a given, but a task. Nietzsche’s statement, that man is a being that needs to be surpassed, not a goal in itself but a transitional being, may be understood in this way as well. It is man’s purpose to always transcend himself.

It appears that, with the latest technologies, we encounter a new meaning of the words of the German philosophical anthropologist Helmuth Plessner, man is ‘artificial by nature.’ In his influential work The Levels of the Organic and Man [Die Stufen des Organischen und der Mensch, 1928], Plessner made an analysis of modes of existence of different types of organic beings, including humans. He looks at these beings in terms of their ‘boundary realizations’: the way in which they may or may not demarcate the line between themselves and their surroundings. This turns out to be a valuable criterion for distinction.

Stones, for example, are defined completely externally. They do not have an ‘inside’ from which they could experience a boundary with a world ‘outside.’ Meanwhile, plants do have an inside and an outside: there is a boundary between an ‘inside world’ and an ‘outside world’ and their metabolism regulates any traffic across the boundary.
Because of this boundary between the inside and outside, plants, just like all living creatures, have *positionality*: they have a relationship with their border. However, a plant does not know about this boundary, it has no centre from which it can experience its own limits. This is what distinguishes plants from animals. Animals do operate from a centre: an animal is not just an organic body, but it is also *in* that body and experiences the world *from* that body.

The human way of existence, then, is characterized by the fact that humans have a relation to their centre as well. They do not only act from a centre, they are also aware of it. This adds a third dimension to the human physicality. Not only *are* humans their body and *in* their body, they also *have* a body. They have a relationship to their corporeality. In addition to their centricity – operating from their centre – they are also eccentric, i.e. they can step outside their centre and develop a relationship with it. People are always an audience of themselves: they do not coincide with themselves, but in addition to their experience of the world, they always have an *experience of their experience*.

This eccentricity makes humans, in the words of Plessner, “artificial by nature.” It is part of our nature that we are unnatural. The reason for this is the tension that our eccentricity creates. Because people do not just ‘exist,’ their existence is an assignment for them, a challenge, a task. It belongs to our nature that we continually have to make something of ourselves. Plessner explains eccentricity as the experience of a permanent imperfection. The distance to ourselves and to the world, which arises through our self-consciousness, begs to be bridged. It is precisely here that technique plays an important role: man creates for himself an artificial environment to compensate for the imperfection and the nakedness that he experiences. We do not take ourselves and the world as given, but as a task: we literally have to make something of it. Technology bridges the distances and compensates the imperfections that we experience.

In this way, Plessner radicalizes the philosophical anthropological theme of man as a *deficient* being. For him, the human deficit is not the lack of an adequate organic set of instruments for survival, but a consequence of human eccentricity. Because people have a relationship to their centre, there is a distance to themselves and to the world that they then try to bridge. It is this eccentricity that makes us human, and it is this distance from our own centre that ensures that people technologically interfere in reality.
Mediation and technology

The eccentric character of human existence also gives the human relation to the world a specific character. Plessner characterizes it as an ‘indirect directness,’ or ‘mediated immediacy.’ Our relations to the world always involve a detour. They can never be experienced as direct, because we always have a relation to these relations. Because of our eccentric nature, we are never entirely ‘in’ these relations; we are always aware that there is this relation. Any experience of the world inevitably also involves an experience of the relation that makes this experience possible. The world is never merely ‘given’ to us, because we are always aware of the way in which it is given. We only have mediated access to the world.

Dutch philosopher Petran Kockelkoren introduced Plessner’s concept of mediated immediacy into philosophy of technology. The mediated character of our relation to the world also involves technologies, as Kockelkoren explains (Kockelkoren, this volume). Connecting to Martin Heidegger’s ideas about the ‘ready-to-hand’ character of tools (1927), and to Don Ihde’s analysis of human-technology relations (1990), Kockelkoren argues that technologies deserve a well developed place in our understanding of the relations between humans and the world (Kockelkoren 2003).

In Being and Time, one of the subjects Heidegger investigated is the relation between human beings and ‘equipment,’ or ‘tools’: things that are used to fulfill a particular purpose. Heidegger shows that when we deal with such objects, they withdraw, as it were, from our experience. We do not focus on our hammer when we are hammering, but on the nail we want to hit. Things-in-use are ‘ready-to-hand,’ as Heidegger calls it, as opposed to ‘present-at-hand’ objects that are examined from a detached and external standpoint. Our experience of the world takes place through the things that we use. We do not experience these things themselves, but they give us a specific form of access to the world.

Don Ihde elaborated this idea of ‘readiness-to-hand’ into an analysis of various types of human-technology relations. Ihde has researched the many ways in which the relationship between humans and the world is actually mediated by technologies (Ihde 1990). People can embody technologies, as when wearing a pair of glasses, which one does not look at but look through. Other technologies require that we have to read, in the way that a thermometer gives information on temperature, or an ultrasound scanner gives a representation of an unborn child. People can also interact with technology, as when operating a DVD player or setting a central heating thermostat. Finally, within the framework sketched by Ihde, technologies can also play a role in the background of our experience. The fan noise
made by a computer and the illumination provided by room lights are not experienced directly, but form a context within which people experience reality. All these human-technology-world relations can be seen as specific instances of ‘technological mediation.’ In our technological culture, these are the shapes that our ‘mediated immediacy’ or ‘indirect directness’ can take.

Ihde’s framework has been of considerable value to philosophy of technology. Yet, current technological developments seem to urge us to expand this framework. The implicit focus of Ihde’s schema is technology that gets *used*: glasses, telescopes, hammers, and hearing aids. However, the newest technologies increasingly evoke human-technology relationships that can no longer be characterized in such ‘use’ configuration.

The development of intelligent environments, for instance, with the Ambient Intelligence programme initiated by Philips as a prime example, leads to a configuration that might rather be called *immersion*. Here, people are immersed in an environment that reacts intelligently to their presence and activities. Such technologies go beyond what Ihde calls a ‘background relationship’; because they engage in an active interaction with humans, they are more than just a ‘context.’

At the other end of the spectrum there are technologies that do not merge with our environment, but with ourselves. Technologies like brain implants, psychotropic drugs, and intelligent prostheses, blur the boundaries between technologies and the human body. Relations with these devices go beyond that of *incorporation*; it might be said to represent a *merge*, as it becomes difficult to draw a distinction between the human and the technological. When a deaf person is given a degree of hearing capability thanks to a cochlear implant connected directly to their auditory nerve, then this ‘hearing’ is a joint activity of the human and the technology; it is the configuration as a whole that ‘hears,’ and not a human being whose ‘hearing’ is restored thanks to technology (cf. Verbeek 2008).

Sometimes, these technologies are seen as steps towards ‘human enhancement.’ Rather than restoring an original state, and ‘curing’ people with ‘defects,’ these technologies interfere directly with what it means to be human. Deep brain stimulation is a good example here, as this technology consists of a device with several electrodes that are implanted deep into the brain in order to reduce, for instance, the motor effects of Parkinson’s disease, or the impact of psychiatric disorders such as severe depression or obsessive-compulsive disorder. These implants can have a serious impact on people’s personality.

A famous case was described in the Dutch medical journal *Tijdschrift voor Geneeskunde*. This article recounts how the condition of a patient suffering from Parkinson’s disease improved markedly after having been implanted
(Leentjens et al., 2004). Yet, while the symptoms of Parkinson’s disease reduced notably, his behavior also changed and developed to become increasingly more uninhibited. He got involved in extramarital relationships, spent all his money carelessly, and was unaware of his behavioral change until the DBS was discontinued for medical reasons. As soon as his Parkinson’s symptoms returned – he became entirely bed-ridden and dependent. There appeared to be no middle way; he would have to choose between a life with Parkinson’s disease, bed-ridden – or a life without the symptoms, but so uninhibited that he would predictably get himself into trouble. In the end, he chose to be admitted to a psychiatric hospital, where he could continue DBS and suffer fewer symptoms of his disease, but at the same time be protected against his undesired behavioral changes.

This case raises all sorts of questions about how technology affects what it means to be human. What does this imply for our understanding of our ‘mediated directness’? And how can Plessner’s anthropology help in analyzing human-technology relations like this? Can human beings who surround or even change themselves with the latest technology still be understood by using Plessner’s terms?

Expanding Plessner

Jos de Mul has argued (De Mul 2003, 2010) that contemporary information technology really puts Plessner’s notion of eccentricity to the test. This technology adds a new dimension to the ‘positionality,’ which for Plessner counts as the defining aspect for distinguishing between stones, plants, animals, and human beings. Information technology enables different forms of being-there, such as telepresence and presence in a virtual reality. In the case of telepresence, humans are present in the world through a robot: they experience and act at a distance, because they are in contact with a part of reality, through cameras, microphones and the ‘body’ of a robot, where their own body is not present at that moment in time. And in the case of virtual realities, people experience and act in an artificial reality through an avatar who represents them in that reality: they see their own avatar on screen, walking through a virtual world.

Both forms of being-there imply a new positionality, according to De Mul. They change human eccentricity, not by moving the centre of a human being to a different place – to the robot or the avatar – but by doubling the centre. The centre of our experience is no longer exclusively in our own body, but neither is it moved to a robot or an avatar. The centre of our experience is in both our own body and outside of it. We experience the
world by experiencing what the robot experiences; we act in a virtual world by letting an avatar act on behalf of ourselves.

De Mul calls this form of eccentricity *poly-(ec)centricity*: in contemporary information technology, a multiplication of centricity and eccentricity occurs (De Mul, 2010, 201-205). Instead of extending our body with technology and being in the world ‘through technology,’ we are present in a twofold manner: we interact with technology and technology acts on our behalf; we experience the technology and we experience how technology experiences the world.

However, this extension of Plessner’s notion of human eccentricity is not sufficient to do justice to all new technologies. De Mul’s expansion allows us to bring prosthetics and virtual environments into Plessner’s framework in order to analyse the relationships between man and the world. But technologies such as psychotropic drugs, *deep brain stimulation* and genetic intervention play a completely different role in human eccentricity.

These technologies all interfere – at least potentially – in human consciousness. Rather than influencing the centre from which humans act and experience, they influence the nature of human eccentricity: the way in which people relate to themselves. By influencing our moods, by altering our ability to concentrate or even by interfering with our character traits, these technologies change eccentricity itself. They do not result in multiple centres of experience, but in a new position outside of ourselves. A position from which humans not only relate to their centres, like in the case of the eccentric position, but also to eccentricity itself, in which they now can actively interfere.

Here, we seem to encounter a new positionality. Just like human eccentricity moved beyond the centricity of the animal, these new technologies seems to take us beyond the eccentricity of the ‘old’ human. This new positionality could be called *meta-eccentricity*. Rather than involving a multiplication of bodies from which people are present in the world, as in De Mul’s concept of poly-eccentricity, this form of eccentricity involves a change of the body itself, which forms the basis of human eccentricity. The body is no longer a given that may or may not be extended with other entities: it has become possible to interfere in the bodily basis of eccentricity. The eccentric idea that we not just *are* a body, but also *have* a body, needs to be extended with the meta-eccentric idea that we can also *interfere* in our body.

As a result, rather than just having a relationship to our centric position, we also have a relationship to our eccentricity, which makes this position visible. We are eccentric with regard to our eccentricity – hence ‘meta-eccentricity.’ Our very eccentricity has entered the realm of human action and design, as the case of the Parkinson patient with deep brain stimulation showed. This man did not simply have freedom in the sense we ordinarily
conceive it, but he had to decide about the freedom of his own freedom. Not only did he look over his own shoulder, as eccentric positionality could be explained; he also had to decide how to look over his own shoulder.

What does this all mean for our notion of man? To what extent can we call a meta-eccentric being still a human being? Plessner classifies the organic into a few 'steps': from stone via plant and animal to man. Do we have to place the cyborg, constructed from human and technological components and characterised by poly – and meta-eccentricity, on a new step? Or do these forms of eccentricity belong to the natural artificiality of man as well? Does a post-human relationship to the world become visible with these new ways of being-in-the-world, or are these simply extensions of the repertoire of man?

Interestingly, the meta-eccentric form of positionality that becomes visible when analyzing recent technological developments can in fact be seen as a fully-fledged aspect of human existence. The technological ways of interfering in ourselves show what we implicitly have always already been, only with greater intensity: we are artificial creatures that find their origin in technology. It is our 'natural artificiality,' in Plessner's terms, that makes our eccentric positionality artificial as well. In retrospect, we have in fact always organized how we are eccentric, by developing frameworks of interpretation about ourselves, and organizing the decisions we make about ourselves and our own lives in cultural practices and material arrangements.

We do not stop being human when we interfere with our bodies; on the contrary, this is precisely what characterizes us as human. In Donna Haraway's terms: “we have always been cyborgs.” Bernard Stiegler even uses a vocabulary that resembles Plessner's thoughts when he speaks about our 'originary prostheticity' or even 'originary technicity.' Just like how a human being does not stop being an animal by adding an eccentric position to the centric, we do not become less human by adding a meta-eccentric position to our eccentricity.

In short, in human existence, the seemingly obvious dichotomy of *physis* versus *techne* is distorted right from the onset. Technology is part of human nature – it is an element of our 'natural artificiality.' Recent technological developments do not go beyond Plessner's framework, but rather provide a new, more radical interpretation of his theme. Furthermore, they allow us to refine Plessner's analysis of human positionality, by showing that eccentricity always involves meta-eccentricity as well.

In this age of human enhancement, we no longer just design our existence existentially, but also biologically – according to Stiegler we have in fact always already done that without explicitly realizing it, but it becomes more explicit in these times of fast paced technological development. The fact that the latest 'anthropo-technologies' appear to be radical variations of
the old theme of the natural artificiality of man does not make it any less relevant in terms of its implications. Through the intertwining of *fysis* and *technè*, new technologies shape the human condition in new ways over and over again. The meta-eccentricity that has always implicitly accompanied human eccentricity is now moving explicitly to the foreground, given that emerging technologies allow us to interfere in new ways in the character of our own freedom and the shapes our eccentricity can take.

Conclusion

Helmut Plessner’s philosophical anthropology offers highly relevant insights into philosophy of technology, especially when it is expanded in confrontation with the contemporary approach of technological mediation. Mediation theory can be grounded in Plessner’s analysis of the ‘indirect directness’ of the human way of being in the world. Furthermore, contemporary technological developments that involve a physical ‘blending’ of humans and technologies give the impetus to expand Plessner’s theory of eccentricity. Technologies that explicitly interfere in our minds and moods – drugs, brain implants – give us the possibility to modify our eccentricity. In a way, we have become eccentric with respect to our eccentricity.

Upon closer inspection however, this meta-eccentricity appears to be a phenomenon that has always accompanied human eccentricity. We have always – albeit usually only implicitly – organized our ways of being eccentric. It is eccentricity itself that makes it possible to develop a relation, not only to our centricity but to our eccentricity itself as well. This brings us back to that other, dialectical tradition in the anthropology of technology: in the mirror of technology, we keep discovering and overcoming ourselves.

Bibliography

Heidegger, Martin. 1927. Sein und Zeit. Tübingen: Max Niemeyer Verlag

