8 Estimating migration potential: Egypt, Morocco and Turkey

Heinz Fassmann

8.1 Preliminary remarks

It is a well-known fact that population reproduction in the 27 states of the European Union (EU) will, in the long run, depend on immigration. This is mainly the result of fertility rates which lie below reproduction level. Currently, the number of births and deaths is still more or less balanced in many EU countries. However, as soon as the baby-boomers born in the 1950s and 1960s begin to die, the balance of birth- and death-rates will tilt toward the negative. Only then, at the very latest, will immigration become necessary, both to ease the inevitable structural adaptations in welfare systems (including pensions and care) and to close the gaps in labour supply in a simultaneously growing economy. Hence, the question that many EU countries will face is less whether immigration is politically desirable and necessary than from where the large numbers of immigrants needed in the future are supposed to come.

For a long time, Eastern Europe was considered to be one of the major source regions of future immigration to the EU because of the marked economic gap between Eastern and Western Europe. From a demographic point of view, however, this option no longer seems tenable. The demographic development of Eastern Europe’s population is now running parallel to that of Western Europe: falling birth rates, an expected reduction in the size of the working population, and an increase in persons age 60 years and older. These changes will hit Eastern Europe slightly later – albeit harder – than Western Europe due to the fact that the fertility rates have begun to fall more recently in Eastern compared to Western Europe. Nevertheless, the demographic developments in the whole of Europe will converge in the long term, precipitating a reduction in potential and actual East-West migration.

The situation in the southern and south-eastern areas bordering the EU is different altogether. In Turkey and North Africa, for instance, the populations have developed along very different paths to those in Europe. Here fertility rates lie considerably above the limits necessary to maintain the present population characterised by a surplus of younger persons. Together these tendencies have resulted in a positive birth balance and an overall
increasing population (see Ralf Ulrich in this volume). In the long term, fertility rates there will fall, too, but the present demographic momentum will continue to result in a growing population for many years to come. In the following, I analyse how massive this population growth will be, discuss how it will affect migration behaviour and assess the migration potential resulting from this population growth. The crucial question I intend to address is: How much immigration could the EU expect from Turkey, Egypt, and Morocco if there were no entry and residence barriers? What would be the migration potential in such a completely liberal migration regime without any border controls?

8.2 Methods of estimating migration potential

Migration is one of the most difficult demographic processes to track and to predict, especially over an extended period of time. International migration (from one state to another) generally occurs for economic, but also for social and political, reasons. The search for a better life, a secure livelihood and an escape from hunger and poverty are all important reasons for leaving one’s homeland. Then there are the various political crises, wars and conflicts that drive people out of their accustomed surroundings in pursuit of a safe abode. Yet it is difficult to correctly assess the long-term economic development in the potential countries of both origin and destination. And it is nearly impossible to prognosticate future conflicts and crises in Europe and contiguous regions (see Faath & Mattes, and Nuscheler, in this volume).

Regardless of how difficult it may be to estimate future migration potential, the question is so important and so relevant that it remains the subject of numerous research studies. Such works may be divided into three main groups with respect to their methods and content. The first group is based on macro-analytic model calculations; the second uses micro-analytic approaches and extrapolates survey data to predict future migration behaviour; the third group is concerned with long-term predictions based on demographic parameters (such as predicted population development and estimation of age-specific migration probabilities). Because the present estimation of probable migration is based on this latter method, I will concede more space to a discussion thereof.
8.2.1 Macro-analytic model calculations

The calculations based on econometric models forecast the extent of future migration at a high level of aggregation – normally for entire countries. A number of assumptions are made – for example, that expected migration is dependent on differences in income and job opportunities. Income and employment differentials between regions are presumed to lead to migration from low-income regions with few job offers, to high-income regions with many vacancies. The size of this migration flow (the dependent variable) depends on the differences in income and employment (the independent variables). If these differences become greater, then migration increases and, if they become smaller, migration slows down (Borjas 1999; Harris & Todaro 1970).

The exact relationship between income and employment differentials and spatial mobility used in these forecasts is determined on the basis of existing empirical studies. Such studies have to be carried out in areas that do not impose legal instruments to limit and select migration. One model case that has served to determine the influence of labour-market-related variables in an unrestricted migration space is internal migration within the United States. Walterskirchen and Dietz (1998) compare the change in net migration between the individual US states, with data on their income levels and income developments, in order to calculate the exact relationship between these two factors. Long-term investigations of this kind show that an income differential of 10 per cent triggers a net immigration of 0.05-0.15 per cent of the population of the respective states of origin.

Calculations of this nature generally contain great uncertainties. It is not clear how the source and receiving regions will develop economically or whether income differentials always evoke the same size of migration flow. Furthermore, it is problematic to transfer data from observations in North America to Europe, since such a transfer is based on the implicit assumption that workers in Europe react to income differentials with the same flexibility as North Americans do. However, current data show that this is not the case. The average income in the poorer regions of the EU is, today, often only about half – and sometimes only one third – of the average income in the entire EU, but this has not yet triggered major migration movements from the poorer to the richer areas. Income differentials may thus be seen as only one aspect of any explanation for migration. Existing research tells us that, besides economic reasons, social factors such as personal networks, living conditions in both the source and the destination countries, and even climate and quality of living matter greatly in decisions to migrate.
8.2.2 Survey data

Micro-analytic studies on migration potential ask those directly ‘affected’ for their willingness to migrate, employing standardised, semi-standardised or open interview techniques. They ask whether the person in question would be ready and willing to take on work in another country and leave his or her homeland. The results of such micro-analytic studies are of a similar value as polls on voting intentions – ‘If it were possible to migrate tomorrow and there were no legal barriers, how willing would you be to leave your home and move for a shorter (or longer) period of time to one of the 27 EU states?’. It is this question that micro-analytic studies are able to answer – without our knowing whether persons who declared their willingness to migrate would actually do so when the time comes or whether those not interested in working in the EU at the time of the interview would in fact move to Germany, Austria or any one of the other EU-27 states when they have the opportunity.

Hence, micro-analytic studies have two major faults – first, the expression of intent is often presumed to be followed by the implementation of such intent, which is not always the case. Second, persons who do not express the intention to leave in a questionnaire or in an interview may, nevertheless, leave later. Furthermore, unlike macro-analytic models, micro-analytic studies cannot determine the expected size of yearly migration flows, but only the number of persons who are, in principle, willing to migrate, but who might implement their wish over a period of several years. Any comparison of the results of these two methods must incorporate assumptions determining how many, per year, of those who expressed an intention to migrate will realise this intention. Nevertheless, such surveys seem to provide more realistic prognoses in the short term than macro-analytic model calculations.

There are generally fewer micro-analytic than macro-analytic studies because they are more complex and costly to realise. The samples have to be large enough to make reliable statements about the number of people willing to leave. In a sample of 100 interviewed people, for example, a 5 per cent migration potential would mean that only five persons have declared the intention to leave. But it is not possible to make valid statistical statements based on a group consisting of five persons. Thus, the sample cannot consist of 100 persons, but has to have thousands of interviews - with the respective research means necessary to carry out such large and costly studies. Moreover, it does not suffice to ask the interviewee whether he or she intends to emigrate. Further questions are necessary to determine whether a person willing to migrate will realise this wish (see Fassmann 2005; IOM 1999; Krieger 2004).
8.2.3 Demography-driven prognoses

The third method of studying migration potential combines long-term demographic prognoses with age-specific emigration tendencies. The advantage of demographic prognoses is that they allow the making of relatively valid projections of future developments for a period of one to two decades. As a major portion of international migration consists of people moving for reasons of work and family, there is a particular interest in the future population of working age when studying migration potential. Such studies usually consider how the working-age groups develop in both the potential source and the destination regions. Clearly, if the working-age group grows in a potential country of origin, while the ability of the local labour market to absorb such workers remains the same, migration potential may be expected to rise.

This method of calculating migration potential is thus, basically, an analysis of population prognoses, primarily for the regions of origin. Migration potential is extrapolated from the development of the working-age group in a given society – without asking these persons for their intentions to leave or considering macro-economic parameters in any detail. Such a calculation will yield a possible migration potential based on certain assumptions concerning the general mobility level in the society; it is necessary to fine-tune this method in order to obtain a higher rate of prognostic accuracy.

One way of doing so is to link the future age structure of the respective population with age-specific migration rates determined on the basis of existing empirical studies or based on normative assumptions. Calculations of this type separate the demographic component from the behavioural. The demographic component results from the development of the age groups, the behavioural component from the probability of members of that age group actually emigrating. Thus, the migration potential at a specific point in time t+1 consists of the sum of all age groups (between 15 and 60 years of age) at time t+1 multiplied by the age-specific emigration rates. The emigra-

1 Whether this migration potential in fact results in emigration is difficult to determine. For that reason it does not seem legitimate to take the calculated potential into consideration in the demographic model. For instance, if we subtracted the number of potential migrants from the whole population, this would imply that we consider that 100 per cent of the potential would result in real emigration. Furthermore, a higher level of emigration always carries with it a (time-shifted) rise in re-immigration, which would then also have to be taken into account in the model. This example shows that delineating a demographic prognosis model from a behavioural model is advantageous and should be retained.
tion rates in turn are derived from the empirically observed emigration per age group, with respect to the total population in the country of origin.²

Estimates of this type are thus based on two factors – the future age structure of the population and future emigration profiles. Determining the former is a relatively easy task with the help of existing population prognoses of relevant institutions such as the United Nations Population Division (UNPD); it is more difficult to build reliable assumptions concerning future emigration profiles.³ It would appear to be a valid and purposeful approach to simply transfer present observations of age-specific emigration profiles to future constellations and situations, as long as such an approach takes into account the macro-economic and legal conditions. Transferring present observations of age-specific emigration to future situations seems justified since they display a certain regularity, as was shown by Rogers and Castro (1981).

8.3 Future population

Before estimating migration potential, I provide a general insight into population development in the three MENA countries selected as exemplary for the region in this book: Turkey, Egypt and Morocco (for a general overview of population development in the whole MENA region in comparison to the EU-27 and the sub-Saharan countries, see Ulrich in this volume).

Demographic development in Turkey, Egypt and Morocco shows a clear picture: the population in all three countries is growing (see Table 8.1). In 2015, around 199 million people will be living in the three countries; ten years later, the population will have increased to 221 million and, by 2050, 254 million people will be residing in Turkey, Egypt and Morocco. The increase will be the most significant in Egypt (+33 per cent for the whole period) and less pronounced in Turkey (+6 per cent) and Morocco (+5 per cent). The main drivers of this increase are the young age structure and

² This is a true rate because – both theoretically and statistically – the emigrants are no longer part of the original population. Were that the case, one would instead speak of a quota.

³ Assumptions concerning emigration and immigration are always built into a population prognosis. In order to avoid counting migration twice, potential should be interpreted only as such. If we were to assume that a specific share of this potential does actually leave, then this value would have to be subtracted from the whole population before calculating the age structure of the next period. Empirically speaking, however, this sort of limitation never becomes relevant, since subtracting even the complete migration potential would effectively reduce the population in any one age group by only a few per cent.
the relatively high fertility in all three countries. The median age is 26.0 in Egypt, 28.2 in Morocco and 30.2 in Turkey or, in other words, 50 per cent of the population in Egypt is younger than 26.0 years (or 28.2 and 30.2 in Morocco and Turkey) which is extremely young compared to countries like Germany (46.5) or Austria (43.6). In addition, the total fertility rate is assumed to be 2.46 in Egypt, 2.01 in Morocco and 1.91 in Turkey between 2015 and 2020. Once again, the differences with fifteen old EU member states are significant (see Ulrich in this volume).

Table 8.1 Entire population 2015 to 2050 (’000)

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey</td>
<td>77,003</td>
<td>80,753</td>
<td>83,984</td>
<td>86,665</td>
<td>91,617</td>
</tr>
<tr>
<td>Egypt</td>
<td>88,179</td>
<td>94,810</td>
<td>100,909</td>
<td>106,498</td>
<td>123,452</td>
</tr>
<tr>
<td>Morocco</td>
<td>33,570</td>
<td>35,078</td>
<td>36,406</td>
<td>37,502</td>
<td>39,200</td>
</tr>
<tr>
<td>Total</td>
<td>198,752</td>
<td>210,641</td>
<td>221,299</td>
<td>230,665</td>
<td>254,269</td>
</tr>
</tbody>
</table>

Source: UNPD (2011), medium variant; author’s calculations

In the context of migration potential, the working-age population is of particular interest. A significant growth of the working-age population will increase the inclination to emigrate and vice versa. The medium variant of the UN prognosis demonstrates a clear tendency (see Table 8.2).

The working-age population in the three countries of the MENA region under discussion here is around 125 million and is set to increase because of the age structure and the still relatively high fertility rates. The mid-range variant of the UN prognosis predicts an increase to 146 million persons of working age. In other words, the working-age population in these three MENA countries will increase by 1.3 million every year until 2030, solely on the basis of the demographic development. This increase will be significantly higher in Egypt than in Morocco or Turkey, where birth rates have begun to fall earlier than in Egypt.

A growing economy should be able to absorb such an increase in the working-age population by about 1.5 per cent per year (of the working-age population). The average rate of economic growth in 2009-2011 was 4.2 per cent in Egypt, 4.2 per cent in Turkey and 4.3 per cent in Morocco (CIA 2012). One must take into account, however, that the growth of employment must be less than the overall economic growth so that productivity may rise in line with international competitiveness. Further, the actual increase in those persons willing to work may exceed the increase in the working-age population if the willingness to work and, thus, the actual participation
rate, increases for cultural and social reasons (modernisation effects). Such areas harbour significant additional potential for the domestic labour supply.

Table 8.2 Working-age population aged 15-60 years (‘000)

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey</td>
<td>50,056</td>
<td>52,428</td>
<td>54,160</td>
<td>55,403</td>
<td>53,107</td>
</tr>
<tr>
<td>Egypt</td>
<td>53,621</td>
<td>57,994</td>
<td>62,443</td>
<td>66,736</td>
<td>74,210</td>
</tr>
<tr>
<td>Morocco</td>
<td>21,544</td>
<td>22,271</td>
<td>23,097</td>
<td>23,821</td>
<td>23,147</td>
</tr>
<tr>
<td>Total</td>
<td>125,222</td>
<td>132,693</td>
<td>139,699</td>
<td>145,960</td>
<td>150,465</td>
</tr>
</tbody>
</table>

Source: UNPD (2011); author’s calculations

Besides looking at the working-age population, it would seem interesting to study the age-specific ‘fringes’ of the working-age population, that is, on the one hand, those aged 15-19 years who have left the school system and are entering the job market and, on the other, the portion of the population aged 55-59 years, who are leaving or are about to leave the job market. The difference between the numbers of people in these two age groups indicates whether the working-age population is increasing or decreasing. This is important in evaluating the absorption capacity of future labour-market development.

Table 8.3 The gap between age-specific ‘fringes’ of the working-age population (the number of those aged 15–19 years minus the number of those aged 55–59) (‘000)

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey</td>
<td>3,053</td>
<td>1,954</td>
<td>1,813</td>
<td>1,058</td>
<td>–958</td>
</tr>
<tr>
<td>Egypt</td>
<td>4,577</td>
<td>4,581</td>
<td>4,700</td>
<td>4,556</td>
<td>1,238</td>
</tr>
<tr>
<td>Morocco</td>
<td>1,374</td>
<td>1,204</td>
<td>1,152</td>
<td>884</td>
<td>–375</td>
</tr>
<tr>
<td>Total</td>
<td>9,004</td>
<td>7,739</td>
<td>7,665</td>
<td>6,498</td>
<td>–95</td>
</tr>
</tbody>
</table>

Source: UNPD (2011); author’s calculations

Of course, this is a very general analysis which does not reflect the real number of people entering or leaving the job markets in the respective MENA countries – there are no reliable data available for that purpose. Since we cannot assume that careers in the MENA countries follow a collective and homogeneous pattern of job-market entries and exits, the analysis is a schematic model rather than an empirical description of facts. What this method can provide, however, is insight into the extent of asymmetry in
the age pyramid and the demographic dynamics of potential job-market entries and exits.

The overall increase in the number of working-age persons in the MENA countries already hinted at the fact confirmed in this calculation (see Table 8.3): the number of those aged 15-19 years is greater than that of the 55-59 age group. If we compare only these two relevant age groups, an additional 9 million working-age persons will enter the job market between 2015 and 2020 – that is, around 1.8 million every year. Because of the decrease in births and the general ageing of the population, this asymmetry will be reduced by 2030, by which time the number of additional persons entering the job market will constitute only about 6.5 million over a five-year period, or around 1.3 million per year.

This calculation again demonstrates that the three MENA countries will need continual and strong economic growth if they are to absorb the additional working-age population into their job markets. A crisis or a significant change in the political and economic systems would pose a special challenge to the precarious situation, since any deviation from the path of continual growth would necessarily increase the number of under- and unemployed, and possibly also of those willing to emigrate. This is also confirmed by Fargues in a study of demographic patterns across the Mediterranean and their implications for migration:

Until at least 2030 in MENA, the generation reaching working age will be much larger than that reaching retirement age. Even though the number of new additions to the labor market has stagnated and will even slightly decrease between 2015 and 2025, the size of the total working-age population will continue to rise sharply during the next two decades compared to the EU-27. Europe will be subject to the opposite trend, as its total working-age population will start to shrink in 2010 while the numbers of new entrants to the labor market will steadily decline over the next 20 years due to low fertility in the last decades (Fargues 2008: 5).

Fargues expects an increase in the migratory intensity between MENA and the EU-27 as a consequence of this complementary demographic dynamic.
8.4 Demography-driven calculation of the migration potential

To answer the crucial question raised at the beginning of this chapter – ‘How much immigration could the EU expect from Turkey, Egypt and Morocco if there were no entry and residence barriers?’ – I do not resort to a macro-economic model (for reasons of content) nor do I take a survey (for cost reasons). Rather, I link demographic prognoses with age-specific emigration rates, as described before.

8.4.1 Age-specific emigration profiles

Demography-driven calculations of migration potential draw on information about the age structure of the future population and the age-specific migration. For the age structure, I draw on the prognosis of the UNPD. The crucial question which has to be discussed is which age-specific emigration profile to apply. The current emigration from the MENA countries is not typical and does not obey classic push-pull conditions but is, instead, the result of a very specific legal regulation and thus not amenable to simple extrapolation to some future situation. To postulate that there will be no emigration from Egypt, Morocco or Turkey to the EU-27 states in the future under different legal conditions is erroneous. The present minimal emigration is the product of the legal limitations in the destination countries – not the result of any disinclination on the part of the Egyptian population to emigrate.

If we intend to test whether the MENA countries may be considered potential areas of origin for future migration to Europe, and thus whether the size of emigration from those areas represents an opportunity or a threat to European economies, we have to simulate a situation of unhindered immigration from all three MENA countries to the EU. This does not mean that we assume that border controls will fall any time soon, if ever, between these regions. It means that, for the purpose of this study, we are not interested in the effects of border controls on migration potential, but in the more general question of whether the high demand for labour in the EU expected in the near future meets with a similarly high emigration potential in these three countries. I therefore chose three different age-specific migration profiles from member states of the EU-27. These countries are an integral part of a space of extensively unhindered migration, most migration remains within this common space and therefore the transfer of their emigration profiles makes sense.

The three countries are Austria, Slovakia and Poland. Austria is an example of an older member state with excellent migration statistics where the calculation of age-specific emigration rates is unproblematic. Austria
acceded to the EU in 1995, the first peak of emigration after integration into the EU is over and emigration has since stabilised – i.e., it has reached some kind of maturity but is still intense. The opposite is true for Slovakia. Slovakia is an example of a low-wage country with low migratory interactions. This can be explained by cultural and language factors as well as by the closeness to Austria and the Czech Republic that allows Slovakians to commute rather than to migrate. In addition, the statistical procedure does not adequately grasp emigration. The third country is Poland, with a medium-scale migratory interaction and a strong increase in emigration after accession to the EU in 2004. This example shows what happens when high-wage countries abolish their legal barriers and allow entry from a low-wage country, at least in part. Not all EU countries immediately granted Polish citizens full free-movement rights, though some, such as Sweden, the UK and Ireland, did.

Unfortunately, emigration figures in Poland are as unreliable as in Slovakia. They underestimate the real volume of emigration since they only cover those who de-register voluntarily. However, those who intend to leave their country for a short period of time only in order to work abroad seldom publicly declare their intention of leaving the country. As a consequence, only a small share of those actually leaving the country is recorded in Polish statistics (see Bijak & Koryś 2009). Good, reliable statistics are hard to come by, and the process of increasing the quality and reliability of the statistics is not yet over (see Iglicka 2006).^4^4

A look at the empirical reality shows that the basic situation is similar everywhere. As Figure 8.1 illustrates, the age-specific emigration rates adhere to the same pattern in the different European countries, though there are large variations in the absolute rates. Such differences can be explained by the extent of integration into a common migratory space, by the socio-economic situation in the country of origin and – perhaps the major overall reason – by the quality of the statistical measurement of migration (see Fassmann, Reeger & Sievers 2009). The high quality of migration statistics in Austria and Germany explains why these countries have the highest emigration rates, even though they are affluent countries with a relatively low level of emigration.

^4^ To give one example – between 2004 and 2006, Polish official statistics recorded a total of 88,000 emigrants. Over the same period, the British Home Office alone had 361,000 Poles registering in the Worker Registration Scheme to receive access to social services (Home Office 2008) and the British International Passenger Survey reported 221,000 immigrants from the eight countries – the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Slovakia and Slovenia – which acceded to the EU in 2004 but which were not granted free-movement rights, entering Britain with the expressed intent of staying for at least one year, with most of them originating from Poland.
By combining population prognoses and age-specific profiles, we can assess the number of possible emigration movements only. Anyone who has worked on international migration knows that this is only half the truth; emigration must always be set in relation to immigration, and socially relevant are not only data on emigration and immigration but, rather, the net migration in any one area. Put differently, affluent countries that experience much immigration also undergo great emigration when former immigrants have completed their migration project and returned home. Poorer countries, on the other hand, experience first emigration and later re-immigration. This dynamic is invisible in calculations that only consider the emigration flow.\footnote{Of course, the implications of a ‘one-sided’ consideration of immigration or emigration differ, depending on the socio-economic situation in the particular country and its place in a wider migration system. For example, Austria is a relatively affluent country surrounded not only by other affluent countries, but also by poorer ones. About 130,000 immigrants went to Austria in 2011, while about 95,000 people left the country, including both the re-migration of former immigrants to their countries of origin and emigration to other – as a rule more affluent – countries. Poland, on the other hand, is clearly much poorer than its neighbours if we use the usual indicators of prosperity. As a consequence, emigration outweighs immigration – the}
The lack of reliable data makes it necessary to estimate the numbers of yearly emigrations based on the existing data. The estimate departs from the official emigration statistics from the Polish Central Statistical Office for 2004 to 2008, which will be weighted by the ‘Bijak-Koryś factor’, which takes the underestimation into consideration. Bijak and Koryś (2009) compared the 2002 emigration of Poles with immigration into the most important recipient countries, only to find that no more than 17.3 per cent of the Poles recorded as entering their destination countries had been registered as having left Poland. There is good reason to assume that the deficits in registering emigration grew after 2004 when it became easier to leave the country. I will therefore assume that the ‘Bijak-Koryś factor’ has moderately increased to 25 per cent in order to prevent the production of too high a rate of emigration. In order to determine the age-specific emigration rates, the given age distribution of registered emigration will be recalculated and shifted to a higher emigration degree.

The results of these calculations are shown in Figure 8.2, which portrays the recalculated Polish age profile in comparison with the Austrian and the Slovakian ones. Again, the curve with a small pre-labour-force component, the important labour-force component and the decrease of emigration in higher age groups confirms the regularity of the age structure of persons emigrating.

8.4.2 Results

In this next section, I connect the two datasets presented above, which are necessary for setting up a model projection of emigration potential – the population prognoses for Egypt, Morocco and Turkey and age-specific emigration profiles for Slovakia, Austria and Poland. I will use the same age-specific emigration rates over the whole period, which is not completely realistic, but is sufficient for this projection.6

6 One can assume that the migration potential would be reduced as a result of the removal of immigration barriers. Initially, the opening of borders and the implementation of freedom of settlement will result in high levels of emigration. Subsequently, emigration will decline to a ‘normal’ level. In the long run, it does not, therefore, make sense to extrapolate the initial high levels into the future, since the migration potential would be quickly exhausted in such a case (see Bommes, Fellmer & Zigmann in this volume for a discussion).
In a first projection of emigration potential, I connect the population projections for the three MENA countries under discussion here with the (unweighted) age-specific emigration rates from Slovakia, as an example of a more settled population with low migratory interaction. As Table 8.4 shows, there would, nevertheless, be a certain potential for emigration – a result that was already foreseeable from the demographic analysis. In 2015, potential emigration would amount to about 0.24 million people for all three countries and would increase to 0.29 million by 2050.

Table 8.4 Yearly migration potential (’000), Slovakian emigration profile

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey</td>
<td>93</td>
<td>97</td>
<td>100</td>
<td>102</td>
<td>103</td>
</tr>
<tr>
<td>Egypt</td>
<td>102</td>
<td>110</td>
<td>117</td>
<td>124</td>
<td>142</td>
</tr>
<tr>
<td>Morocco</td>
<td>40</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td>236</td>
<td>250</td>
<td>260</td>
<td>270</td>
<td>290</td>
</tr>
</tbody>
</table>

Source: UNPD (2011), author’s calculations

In a second projection, I use the age-specific emigration rates from Austria (see Table 8.5). The Austrian example is representative of a ‘mature’ migration country with a high level of in- and outmigration, similar to Germany or
Switzerland. This calculation marks the upper limit of emigration potential from the MENA region to the EU. It would not be realistic to assume significantly higher emigration rates for these countries because of limited job opportunities in the potential receiving countries that may decrease the realisation of the desire to migrate.

Table 8.5 Yearly migration potential (’000), Austrian emigration profile

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey</td>
<td>782</td>
<td>804</td>
<td>816</td>
<td>824</td>
<td>789</td>
</tr>
<tr>
<td>Egypt</td>
<td>903</td>
<td>950</td>
<td>996</td>
<td>1,044</td>
<td>1,132</td>
</tr>
<tr>
<td>Morocco</td>
<td>347</td>
<td>354</td>
<td>357</td>
<td>361</td>
<td>346</td>
</tr>
<tr>
<td>Total</td>
<td>2,032</td>
<td>2,108</td>
<td>2,168</td>
<td>2,228</td>
<td>2,268</td>
</tr>
</tbody>
</table>

Source: UNPD (2011), author’s calculations

Connecting the population projections for Turkey, Egypt and Morocco with the Austrian age-specific emigration rates from 2007 – which are similar to those of the previous and subsequent years – leads to a significantly higher potential for emigration compared to the Slovakian case. In total, 2.03 million people from Turkey, Egypt and Morocco would emigrate in 2015 based on the Austrian emigration rates. Due to the age structure and the growth of the population, the emigration potential would increase over the whole period. Only after 2050, when the baby-boom cohort retires, will the emigration potential decrease. Turkey would be the first country with a decreasing potential; Morocco and Egypt would follow.

Table 8.6 Yearly migration potential (’000), Polish emigration profile

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey</td>
<td>503</td>
<td>527</td>
<td>543</td>
<td>557</td>
<td>535</td>
</tr>
<tr>
<td>Egypt</td>
<td>583</td>
<td>625</td>
<td>669</td>
<td>714</td>
<td>777</td>
</tr>
<tr>
<td>Morocco</td>
<td>224</td>
<td>232</td>
<td>238</td>
<td>245</td>
<td>235</td>
</tr>
<tr>
<td>Total</td>
<td>1,310</td>
<td>1,383</td>
<td>1,450</td>
<td>1,516</td>
<td>1,547</td>
</tr>
</tbody>
</table>

Source: UNPD (2011), author’s calculations

The third projection is based on the Polish case (see Table 8.6). If emigrants from Turkey, Egypt and Morocco were granted the same rights to enter the EU-27 as the Poles were in 2004, then 1.3 million persons would leave their home countries, assuming that they show the same age-specific probability of emigration. If most of them enter the EU, the resulting immigration would amount to about
70 per cent of all current immigration into the EU-27. Raising immigration by this number would be unusual and – coming on top of current immigration – probably politically difficult to absorb. But of course this is only a hypothetical calculation – the immediate EU accession of Turkey, Egypt and Morocco, with no immigration restrictions, is foreseen neither now nor in the near future.

Because of demographic growth in these three countries the emigration potential would not diminish but in fact rise over the entire model period. If the age-specific emigration rates remain the same, the emigration potential would rise from 1.31 in 2015 to about 1.52 million persons in 2030 and to about 1.55 at the end of the period under observation. Only in the long run and after 2050 would the demography driven migration potential shrink, first in Turkey, then in Morocco and Egypt.

To summarise the results: The application of different age-specific emigration rates shows the variety of possible future emigration potential for the three MENA countries. If Egypt, Morocco and Turkey became integral parts of a common European migration space and if their inhabitants were granted free-movement rights within this migration space, then the emigration potential from these three countries would range from 0.24 million to 2.01 million, with the most realistic figure being 1.31 million. Because of demographic growth in all three countries and over the whole period, the migration potential would increase – from a low level in the Slovakian example and from a high one in the Austrian example. Their demographic growth clearly underlines the importance of the MENA countries as countries of origin for potential migration to the EU.

In the medium variant – i.e., the Polish case – the emigration potential would amount to around 1 per cent of the working-age population of the three countries. In the light of the great differences in wealth, one may view these estimates as under- rather than overstated. If people were asked directly whether they would like to settle in Europe if there were no restrictions on their moving there, then the share of potential migrants would surely be higher. The *Gallup World Poll: The Many Faces of Global Migration*, based on 401,490 interviews with adults in 146 countries, shows that potential migration is the highest in the MENA region. More than one in five adults (21 per cent) in the MENA region said that they would migrate permanently to another country if they had the opportunity, and one in six (16 per cent) said that they were planning to do so over the next twelve months. In absolute numbers, 16 per cent of the working-age population amounts to 20.8 million people in Turkey, Morocco and Egypt who declare that they intend to migrate over the next twelve months – thirteen times more than the more realistic, but maybe underestimated, 1.5 million calculated above (Esipova, Rey & Pugliese 2011).
Further proof for the above results is the differential between the number of youngsters aged 15-19-years entering the job market and the number of people aged 55-59 leaving it. This difference is comparable to the results of the long-term demographic-driven model calculation (see Table 8.3). It implies an increase in the working-age population by 5 million persons in Egypt, 4 million in Turkey and 2.1 million in Morocco per five-year period, or 2.2 million per year for all three countries. This difference does not necessarily result in increased emigration if modernisation processes increases the employment quota in the respective countries.7

8.5 Conclusion

The Middle East and Northern Africa (MENA) and Europe appear to be an ideal demographic match: the former has a large supply of young, active workers, and the latter has a shortage of the youthful, skilled or unskilled labour it needs to sustain its economic competitiveness (Fargues 2008: 3).

Demographic projections show that most European countries will need immigrants in the future in order to fill the gaps resulting from falling birth-rates. Now and then, political actors pose the question as to where these immigrants are supposed to come from. It is not realistic that immigration to the EU-15 or the EU-27 will come from Central and Eastern Europe due to the falling birth-rates and increasing incomes in this region. Even countries such as Moldova, Belarus, Ukraine or Russia – where the considerable income differentials may result in emigration to the EU-27 in the short term – will not be able to fulfil the demand of the EU-27 countries in the long run, again due to falling birth-rates. In the vicinity of the EU, only the MENA states comprise a so-called ‘demographic reserve’ for the EU-27 countries – at least for the next few decades, as the present calculations illustrate (see Schimany 2007).

The complementary demographic structure could be a gain for both sending and receiving regions. In the sending region, the temporary or permanent emigration of a certain share of the youth bulge can lower unemployment, decrease the probability of political tensions and crisis and increase the economic gain due to remittances. The young and well-

7 In addition, emigration is not solely directed towards Europe, as becomes particularly clear in the case of Egypt – emigration from Egypt has been primarily directed towards the Gulf states in the past, so that only part of the emigration potential would, in fact, flow towards Europe, the other part going to the traditional destination countries of Saudi Arabia and Kuwait.
educated workers facing poor employment conditions at home would profit, in particular, from a stay in the EU-27. In the receiving countries, these young qualified workers would be a welcome supplement to the shrinking labour force, slowing down the ageing process and rejuvenating the population. When concepts of circular migration are realisable and returnees bring capital, knowledge and networks with them, then the vicinity of the MENA region and the EU could be a real win-win situation for both regions.

References

