Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 1, 2005

Structural basis of denitrification

  • Oliver Einsle and Peter M.H. Kroneck
From the journal Biological Chemistry

Abstract

Denitrification represents an important part of the biogeochemical cycle of the essential element nitrogen. It constitutes the predominant pathway of the reductive dissimilation of nitrate in the environment. Via four enzymatic reactions, nitrate is transformed stepwise to nitrite (NO2-), nitric oxide (NO), and nitrous oxide (N2O), to finally yield dinitrogen gas (N2). All steps within this metabolic pathway are catalyzed by complex multi-site metalloenzymes with unique spectroscopic and structural features. In recent years, high-resolution crystal structures have become available for these enzymes with the exception of the structure for NO reductase.

:

References

Adman, E.T. (1995). A Taste of Copper. Nat. Struct. Biol.2, 929–931.10.1038/nsb1195-929Search in Google Scholar

Appl, M. (1999). Ammonia, Principles and Industrial Practice (Weinheim, Germany: Wiley-VCH).10.1002/9783527613885Search in Google Scholar

Berks, B.C., Ferguson, S.J., Moir, J.W.B. and Richardson, D.J. (1995). Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta Bioenergetics1232, 97–173.10.1016/0005-2728(95)00092-5Search in Google Scholar

Bertero, M.G., Rothery, R.A., Palak, M., Hou, C., Lim, D., Blasco, F., Weiner, J.H. and Strynadka, N.C.J. (2003). Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat. Struct. Biol.10, 681–687.10.1038/nsb969Search in Google Scholar PubMed

Bertini, I., Sigel, A. and Sigel, H. (2001). Handbook on Metalloproteins (New York, Basel: Marcel Dekker Inc.).Search in Google Scholar

Boulanger, M.J. and Murphy, M.E.P. (2002). Crystal structure of the soluble domain of the major anaerobically induced outer membrane protein (AniA) from pathogenic Neisseria: a new class of copper-containing nitrite reductases. J. Mol. Biol.315, 1111–1127.10.1006/jmbi.2001.5251Search in Google Scholar PubMed

Brown, K., Djinovic-Carugo, K., Haltia, T., Cabrito, I., Saraste, M., Moura, J.J.G., Moura, I., Tegoni, M. and Cambillau, C. (2000). Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase-evidence of a bridging inorganic sulfur. J. Biol. Chem.275, 41133–41136.10.1074/jbc.M008617200Search in Google Scholar PubMed

Brown, K., Tegoni, M., Prudencio, M., Pereira, A.S., Besson, S., Moura, J.J., Moura, I. and Cambillau, C. (2000). A novel type of catalytic copper cluster in nitrous oxide reductase. Nat. Struct. Biol.7, 191–195.10.1107/S0108767300022571Search in Google Scholar

Cardinale, J.A. and Clark, V.L. (2000). Expression of AniA, the major anaerobically induced outer membrane protein of Neisseria gonorrhoeae, provides protection against killing by normal human sera. Infect. Immun.68, 4368–4369.10.1128/IAI.68.7.4368-4369.2000Search in Google Scholar PubMed PubMed Central

Chen, P., George, S.D., Cabrito, I., Antholine, W.E., Moura, J.J.G., Moura, I., Hedman, B., Hodgson, K.O. and Solomon, E.I. (2002). Electronic structure description of the µ4–sulfide bridged tetranuclear CuZ center in N2O reductase. J. Am. Chem. Soc.124, 744–745.10.1021/ja0169623Search in Google Scholar PubMed

Coyle, C.L., Zumft, W.G., Kroneck, P.M.H., Körner, H. and Jakob, W. (1985). Nitrous-oxide reductase from denitrifying Pseudomonas perfectomarina-purification and properties of a novel multicopper enzyme. Eur. J. Biochem.153, 459–467.10.1111/j.1432-1033.1985.tb09324.xSearch in Google Scholar PubMed

de Vries, S., Strampraad, M.J.F., Lu, S., Moenne-Loccoz, P. and Schröder, I. (2003). Purification and characterization of the MQH(2):NO oxidoreductase from the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Biol. Chem.278, 35861–35868.10.1074/jbc.M300857200Search in Google Scholar

Devol, A.H. (2003). Nitrogen cycle-solution to a marine mystery. Nature422, 575–576.10.1038/422575aSearch in Google Scholar

Dias, J.M., Than, M.E., Humm, A., Huber, R., Bourenkov, G.P., Bartunik, H.D., Bursakov, S., Calvete, J., Caldeira, J., Carneiro, C. et al. (1999). Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods. Structure7, 65–79.Search in Google Scholar

Einsle, O., Messerschmidt, A., Stach, P., Bourenkov, G.P., Bartunik, H.D., Huber, R. and Kroneck, P.M.H. (1999). Structure of cytochrome c nitrite reductase. Nature400, 476–480.10.1038/22802Search in Google Scholar

Elliott, S.J., Hoke, K.R., Heffron, K., Palak, M., Rothery, R.A., Weiner, J.H. and Armstrong, F.A. (2004). Voltammetric studies of the catalytic mechanism of the respiratory nitrate reductase from Escherichia coli: how nitrate reduction and inhibition depend on the oxidation state of the active site. Biochemistry43, 799–807.10.1021/bi035869jSearch in Google Scholar

Enemark, J.H. and Garner, C.D. (1997). The coordination chemistry and function of the molybdenum centres of the oxomolybdoenzymes. J. Biol. Inorg. Chem.2, 817–822.10.1007/s007750050201Search in Google Scholar

Farver, O., Kroneck, P.M.H., Zumft, W.G. and Pecht, I. (2002). Intramolecular electron transfer in cytochrome cd1 nitrite reductase from Pseudomonas stutzeri; kinetics and thermodynamics. Biophys. Chem.98, 27–34.10.1016/S0301-4622(02)00082-0Search in Google Scholar

Farver, O., Kroneck, P.M.H., Zumft, W.G. and Pecht, I. (2003). Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase. Proc. Natl. Acad. Sci. USA100, 7622–7625.10.1073/pnas.0932693100Search in Google Scholar

Fülöp, V., Moir, J.W.B., Ferguson, S.J. and Hajdu, J. (1995). The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1. Cell81, 369–377.10.1016/0092-8674(95)90390-9Search in Google Scholar

Girsch, P. and deVries, S. (1997). Purification and initial kinetic and spectroscopic characterization of NO reductase from Paracoccus denitrificans. Biochim. Biophys. Acta Bioenergetics1318, 202–216.10.1016/S0005-2728(96)00138-7Search in Google Scholar

Gordon, E.H.J., Sjogren, T., Lofqvist, M., Richter, C.D., Allen, J.W.A., Higham, C.W., Hajdu, J., Fülöp, V. and Ferguson, S.J. (2003). Structure and kinetic properties of Paracoccus pantotrophus cytochrome cd1 nitrite reductase with the d1 heme active site ligand tyrosine 25 replaced by serine. J. Biol. Chem.278, 11773–11781.10.1074/jbc.M211886200Search in Google Scholar PubMed

Haltia, T., Brown, K., Tegoni, M., Cambillau, C., Saraste, M.,Mattila, K. and Djinovic-Carugo, K. (2003). Crystal structure of nitrous oxide reductase from Paracoccus denitrificans at 1.6 Å resolution. Biochem. J.369, 77–88.10.1042/bj20020782Search in Google Scholar

Hendriks, J., Oubrie, A., Castresana, J., Urbani, A., Gemeinhardt, S. and Saraste, M. (2000). Nitric oxide reductases in bacteria. Biochim. Biophys. Acta Bioenergetics1459, 266–273.10.1016/S0005-2728(00)00161-4Search in Google Scholar

Hendriks, J.H.M., Jasaitis, A., Saraste, M. and Verkhovsky, M.I. (2002). Proton and electron pathways in the bacterial nitric oxide reductase. Biochemistry41, 2331–2340.10.1021/bi0121050Search in Google Scholar

Holm, R.H. and Solomon, E.I. (2004). Biomimetic inorganic chemistry. Chem. Rev.104, 347–1200.10.1021/cr0206364Search in Google Scholar

Jormakka, M., Byrne, B. and Iwata, S. (2003). Protonmotive force generation by a redox loop mechanism. FEBS Lett.545, 25–30.10.1016/S0014-5793(03)00389-2Search in Google Scholar

Jormakka, M., Tornroth, S., Byrne, B. and iwata, S. (2002). Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science295, 1863–1868.10.1126/science.1068186Search in Google Scholar PubMed

Jormakka, M., Richardson, D., Byrne, B. and Iwata, S. (2004). Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. Structure12, 95–104.10.1016/j.str.2003.11.020Search in Google Scholar PubMed

Kim, K.R. and Craig, H. (1993). N-15 and O-18 characteristics of nitrous-oxide-a global perspective. Science262, 1855–1857.10.1126/science.262.5141.1855Search in Google Scholar PubMed

Kobayashi, K., Koppenhofer, A., Ferguson, S.J. and Tagawa, S. (1997). Pulse radiolysis studies on cytochrome cd1 nitrite reductase from Thiosphaera pantotropha: evidence for a fast intramolecular electron transfer from c-heme to d1–heme. Biochemistry36, 13611–13616.10.1021/bi971045oSearch in Google Scholar PubMed

Kroneck, P.M.H. and Abt, D.J. (2002). Molybdenum in nitrate reductase and nitrate oxidoreductase. In: Metal Ions in Biological Systems, Vol. 39, H. Sigel and A. Sigel, eds. (New York, Basel: Marcel Dekker Inc.), pp. 369–403.10.1201/9780203909331.ch10Search in Google Scholar

LaCroix, L.B., Shadle, S.E., Wang, Y.N., Averill, B.A., Hedman, B., Hodgson, K.O. and Solomon, E.I. (1996). Electronic structure of the perturbed blue copper site in nitrite reductase: spectroscopic properties, bonding, and implications for the entatic/rack state. J. Am. Chem. Soc.118, 7755–7768.10.1021/ja961217pSearch in Google Scholar

Messerschmidt, A., Huber, R., Poulos, T. and Wieghardt, K. (2001). Handbook of Metalloproteins (Weinheim; Germany: Wiley-VCH).Search in Google Scholar

Morel, F.M.M. and Price, N.M. (2003). The biogeochemical cycles of trace metals in the oceans. Science300, 944–947.10.1126/science.1083545Search in Google Scholar PubMed

Murphy, L.M., Dodd, F.E., Yousafzai, F.K., Eady, R.R. and Hasnain, S.S. (2002). Electron donation between copper containing nitrite reductases and cupredoxins: the nature of protein-protein interaction in complex formation. J. Mol. Biol.315, 859–871.10.1006/jmbi.2001.5253Search in Google Scholar PubMed

Murphy, M.E.P., Lindley, P.F. and Adman, E.T. (1997). Structural comparison of cupredoxin domains: domain recycling to construct proteins with novel functions. Protein Sci.6, 761–770.10.1002/pro.5560060402Search in Google Scholar PubMed PubMed Central

Newman, D.K. and Banfield, J.F. (2002). Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science296, 1071–1077.10.1126/science.1010716Search in Google Scholar PubMed

Nurizzo, D., Silvestrini, M.C., Mathieu, M., Cutruzzola, F., Bourgeois, D., Fülöp, V., Hajdu, J., Brunori, M., Tegoni, M. and Cambillau, C. (1997). N-terminal arm exchange is observed in the 2.15 angstrom crystal structure of oxidized nitrite reductase from Pseudomonas aeruginosa. Structure5, 1157–1171.Search in Google Scholar

Rasmussen, T., Berks, B.C., Butt, J.N. and Thomson, A.J. (2002). Multiple forms of the catalytic centre, CuZ, in the enzyme nitrous oxide reductase from Paracoccus pantotrophus. Biochem. J.364, 807–815.10.1042/bj20020055Search in Google Scholar PubMed PubMed Central

Silaghi-Dumitrescu, R., Coulter, E.D., Das, A., Ljungdahl, L.G., Jameson, G.N.L., Huynh, B.H. and Kurtz, D.M. (2003). A flavodiiron protein and high molecular weight rubredoxin from Moorella thermoacetica with nitric oxide reductase activity. Biochemistry42, 2806–2815.10.1021/bi027253kSearch in Google Scholar PubMed

Simon, J. (2002). Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol. Rev.26, 285–309.10.1111/j.1574-6976.2002.tb00616.xSearch in Google Scholar PubMed

Simon, J., Einsle, O., Kroneck, P.M.H. and Zumft, W.G. (2004). The unprecedented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase. FEBS Lett.569, 7–12.10.1016/j.febslet.2004.05.060Search in Google Scholar PubMed

Strous, M., Fuerst, J.A., Kramer, E.H.M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K.T., Webb, R., Kuenen, J.G. and Jetten, M.S.M. (1999). Missing lithotroph identified as new planctomycete. Nature400, 446–449.10.1038/22749Search in Google Scholar PubMed

Suharti, Strampraad, M.J.F., Schröder, I. and de Vries, S. (2001). A novel copper A containing menaquinol NO reductase from Bacillus azotoformans. Biochemistry40, 2632–2639.10.1021/bi0020067Search in Google Scholar PubMed

Tocheva, E.I., Rosell, F.I., Mauk, A.G. and Murphy, M.E.P. (2004). Side-on copper-nitrosyl coordination by nitrite reductase. Science304, 867–870.10.1126/science.1095109Search in Google Scholar PubMed

Williams, P.A., Fülöp, V., Leung, Y.C., Chan, C., Moir, J.W.B., Howlett, G., Ferguson, S.J., Radford, S.E. and Hajdu, J. (1995). Pseudospecific docking surfaces on electron-transfer proteins as illustrated by pseudoazurin, cytochrome c550 and cytochrome cd1 nitrite reductase. Nat. Struct. Biol.2, 975–982.10.1038/nsb1195-975Search in Google Scholar PubMed

Wunsch, P., Herb, M., Wieland, H., Schiek, U.M. and Zumft,W.G. (2003). Requirements for CuA and CuZ center assembly of nitrous oxide reductase deduced from complete periplasmic enzyme maturation in the nondenitrifier Pseudomonas putida. J. Bacteriol.185, 887–896.10.1128/JB.185.3.887-896.2003Search in Google Scholar PubMed PubMed Central

Zumft, W.G. (1997). Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev.61, 533–546.Search in Google Scholar

Zumft, W.G. and Kroneck, P.M.H. (1996). Metal-center assembly of the bacterial multicopper enzyme, nitrous oxide reductase. In: Mechanisms of Metallocenter Assembly, R.P. Hausinger, G.L. Eichhorn and L.G. Marzilli, eds. (Weinheim, Germany: VCH), pp. 193–221.Search in Google Scholar

Published Online: 2005-06-01
Published in Print: 2004-10-01

© Walter de Gruyter

Downloaded on 11.12.2023 from https://www.degruyter.com/document/doi/10.1515/BC.2004.115/html
Scroll to top button