Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 1, 2005

Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM

  • A.S.M. Kamruzzahan , Ferry Kienberger , Cordula M. Stroh , Jörg Berg , Ralf Huss , Andreas Ebner , Rong Zhu , Christian Rankl , Hermann J. Gruber and Peter Hinterdorfer
From the journal Biological Chemistry

Abstract

The surface topography of red blood cells (RBCs) was investigated under near-physiological conditions using atomic force microscopy (AFM). An immobilization protocol was established where RBCs are coupled via molecular bonds of the membrane glycoproteins to wheat germ agglutinin (WGA), which is covalently and flexibly tethered to the support. This results in a tight but non-invasive attachment of the cells. Using tapping-mode AFM, which is known as gentle imaging mode and therefore most appropriate for soft biological samples like erythrocytes, it was possible to resolve membrane skeleton structures without major distortions or deformations of the cell surface. Significant differences in the morphology of RBCs from healthy humans and patients with systemic lupus erythematosus (SLE) were observed on topographical images. The surface of RBCs from SLE patients showed characteristic circular-shaped holes with approx. 200 nm in diameter under physiological conditions, a possible morphological correlate to previously published changes in the SLE erythrocyte membrane.

:

References

Boyum, A. (1968). Separation of leucocytes from blood and bone marrow. Scand. J. Clin. Lab. Invest. (Suppl.) 97, 9–29.Search in Google Scholar

Brentjens, J.R., Sepulveda, M., Baliah, T., Bentzel, C., Erlanger, B.F., Elwood, C., Montes, M., Hsu, K.C., and Andres, G.A. (1975). Interstitial immune complex nephritis in patients with systemic lupus erythematosus. Kidney Int.7, 342–350.10.1038/ki.1975.47Search in Google Scholar

Cohen, J.H., Atkinson, J.P., Klickstein, L.B., Oudin, S., Subramanian, V.B. and Moulds, J.M. (1999). The C3b/C4b receptor (CR1, CD35) on erythrocytes: methods for study of the polymorphisms. Mol. Immunol.36, 819–825.10.1016/S0161-5890(99)00102-9Search in Google Scholar

Dufrene, Y.F. (2001). Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells. Micron32, 153–165.10.1016/S0968-4328(99)00106-7Search in Google Scholar

Dvorak, J.A. (2003). The application of atomic force microscopy to the study of living vertebrate cells in culture. Methods29, 86–96.10.1016/S1046-2023(02)00284-0Search in Google Scholar

Engel, A., and Muller, D.J. (2000). Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol.7, 715–718.10.1038/78929Search in Google Scholar

Girasole, M., Cricenti, A., Generosi, R., Congiu-Castellano, A., Boumis, G., and Amiconi, G. (2001). Artificially induced unusual shape of erythrocytes: an atomic force microscopy study. J. Microsc.204, 46–52.10.1046/j.1365-2818.2001.00937.xSearch in Google Scholar

Han, W., Lindsay, S.M., and Jing, T. (1996). A magnetically driven oscillating probe microscope for operation in liquid. Appl. Phys. Lett.69, 1–3.10.1063/1.117835Search in Google Scholar

Hinterdorfer, P. (2002). Molecular recognition studies using the atomic force microscope. Methods Cell Biol.68, 115–139.10.1016/S0091-679X(02)68007-0Search in Google Scholar

Hinterdorfer, P., Schilcher, K., Baumgartner, W., Gruber, H.J., and Schindler, H. (1998). A mechanistic study of the dissociation of individual antibody-antigen pairs by atomic force microscopy. Nanobiology4, 177–188.Search in Google Scholar

Horber, J.K., and Miles, M.J. (2003). Scanning probe evolution in biology. Science302, 1002–1005.10.1126/science.1067410Search in Google Scholar PubMed

Huss, R., Haas, C., Herrmann, M., Kalden, J.R., and Loehrs, U. (2000). Impairment of genomic DNA binding to a putative dysfunctional receptor on erythrocytes independent of complement and antibodies in systemic lupus erythematosus. Virchow’s Arch.437, 380–387.10.1007/s004280000256Search in Google Scholar PubMed

Kienberger, F., Stroh, C., Kada, G., Moser, R., Baumgartner, W., Pastushenko, V., Rankl, C., Schmidt, U., Muller, H., Orlova, E. et al. (2003). Dynamic force microscopy imaging of native membranes. Ultramicroscopy97, 229–237.10.1016/S0304-3991(03)00047-0Search in Google Scholar

Kienberger, F., Zhu, R., Moser, R., Rankl, C., Blaas, D., and Hinterdorfer, P. (2004). Dynamic force microscopy for imaging of viruses under physiological conditions. Biol. Proced. Online6, 120–128.10.1251/bpo80Search in Google Scholar

Klein, D.C., Stroh, C.M., Jensenius, H., van Es, M., Kamruzzahan, A.S., Stamouli, A., Gruber, H.J., Oosterkamp, T.H., and Hinterdorfer, P. (2003). Covalent immobilization of single proteins on mica for molecular recognition force microscopy. ChemPhysChem4, 1367–1371.10.1002/cphc.200300844Search in Google Scholar

Lantz, M., Liu, Y.Z., Cui, X.D., Tokumoto, H., and Lindsay, S.M. (1999). Dynamic force microscopy in fluids. Interface Anal.27, 354–360.10.1002/(SICI)1096-9918(199905/06)27:5/6<354::AID-SIA541>3.0.CO;2-4Search in Google Scholar

Lorenz, H.M., Herrmann, M. and Kalden, J.R. (2001). The pathogenesis of autoimmune diseases. Scand. J. Clin. Lab. Invest. (Suppl.) 235, 16–26.Search in Google Scholar

Muller, D.J., Schabert, F.A., Buldt, G., and Engel, A. (1995). Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys. J.68, 1681–1686.10.1016/S0006-3495(95)80345-0Search in Google Scholar

Nowakowski, R., Luckham, P., and Winlove, P. (2001). Imaging erythrocytes under physiological conditions by atomic force microscopy. Biochim. Biophys. Acta1514, 170–176.10.1016/S0005-2736(01)00365-0Search in Google Scholar

Putman, C.A.J., Vanderwerf, K.O., de Grooth, B.G., Vanhulst, N.F., and Greve, J. (1994). Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett.64, 2454–2456.10.1063/1.111597Search in Google Scholar

Radmacher, M. (2002). Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol.68, 67–90.10.1016/S0091-679X(02)68005-7Search in Google Scholar

Richaud-Patin, Y., Perez-Romano, B., Carillo-Maravilla, E., Rodriguez, P., Simon, A.J., Cabiedes, J., Jakez-Ocampo, J., Llorente, L. and Ruiz-Arguelles, M. (2003). Deficiency of red cell bound CD55 and CD59 in patients with systemic lupus erythematosus. Immunol. Lett.88, 95–99.10.1016/S0165-2478(03)00066-XSearch in Google Scholar

Salzer, U., Hinterdorfer, P., Hunger, U., Borken, C., and Prohaska, R. (2002). Ca2+-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin. Blood99, 2569–2577.10.1182/blood.V99.7.2569Search in Google Scholar

Schilcher, K., Hinterdorfer, P., Gruber, H. J., and Schindler, H. (1997). A non-invasive method for the tight anchoring of cells for scanning probe microscopy. Cell Biol. Int.21, 769–778.10.1006/cbir.1997.0221Search in Google Scholar

Swihart, A.H., Mikrut, J.M., Ketterson, J.B., and Macdonald, R.C. (2001). Atomic force microscopy of the erythrocyte membrane skeleton. J. Microsc.204, 212–225.10.1046/j.1365-2818.2001.00960.xSearch in Google Scholar

Takeuchi, M., Miyamoto, H., Sako, Y., Komizu, H., and Kusumi, A. (1998). Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys. J.74, 2171–2183.10.1016/S0006-3495(98)77926-3Search in Google Scholar

Touhami, A., Othmane, A., Ouerghi, O., Ben Ouada, H., Fretigny, C., and Jaffrezic-Renault, N. (2002). Red blood cells imaging and antigen-antibody interaction measurement. Biomol. Eng.19, 189–193.10.1016/S1389-0344(02)00045-XSearch in Google Scholar

Vie, V., Giocondi, M.C., Lesniewska, E., Finot, E., Goudonnet, J.P., and Le Grimellec, C. (2000). Tapping-mode atomic force microscopy on intact cells: optimal adjustment of tapping conditions by using the deflection signal. Ultramicroscopy82, 279–288.10.1016/S0304-3991(99)00137-0Search in Google Scholar

Wang, H., Bash, R., Yodh, J.G., Hager, G.L., Lohr, D., and Lindsay, S.M. (2002). Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. Biophys. J.83, 3619–3625.10.1016/S0006-3495(02)75362-9Search in Google Scholar

Weidner, N., and Lorentz, W. B. (1986). Scanning electron microscopy of the acellular glomerular and tubular basement membrane in lupus nephritis. Am. J. Clin. Pathol.85, 135–145.10.1093/ajcp/85.2.135Search in Google Scholar PubMed

Published Online: 2005-06-01
Published in Print: 2004-10-01

© Walter de Gruyter

Downloaded on 9.12.2023 from https://www.degruyter.com/document/doi/10.1515/BC.2004.124/html
Scroll to top button