Abstract
The surface topography of red blood cells (RBCs) was investigated under near-physiological conditions using atomic force microscopy (AFM). An immobilization protocol was established where RBCs are coupled via molecular bonds of the membrane glycoproteins to wheat germ agglutinin (WGA), which is covalently and flexibly tethered to the support. This results in a tight but non-invasive attachment of the cells. Using tapping-mode AFM, which is known as gentle imaging mode and therefore most appropriate for soft biological samples like erythrocytes, it was possible to resolve membrane skeleton structures without major distortions or deformations of the cell surface. Significant differences in the morphology of RBCs from healthy humans and patients with systemic lupus erythematosus (SLE) were observed on topographical images. The surface of RBCs from SLE patients showed characteristic circular-shaped holes with approx. 200 nm in diameter under physiological conditions, a possible morphological correlate to previously published changes in the SLE erythrocyte membrane.
References
Boyum, A. (1968). Separation of leucocytes from blood and bone marrow. Scand. J. Clin. Lab. Invest. (Suppl.) 97, 9–29.Search in Google Scholar
Brentjens, J.R., Sepulveda, M., Baliah, T., Bentzel, C., Erlanger, B.F., Elwood, C., Montes, M., Hsu, K.C., and Andres, G.A. (1975). Interstitial immune complex nephritis in patients with systemic lupus erythematosus. Kidney Int.7, 342–350.10.1038/ki.1975.47Search in Google Scholar
Cohen, J.H., Atkinson, J.P., Klickstein, L.B., Oudin, S., Subramanian, V.B. and Moulds, J.M. (1999). The C3b/C4b receptor (CR1, CD35) on erythrocytes: methods for study of the polymorphisms. Mol. Immunol.36, 819–825.10.1016/S0161-5890(99)00102-9Search in Google Scholar
Dufrene, Y.F. (2001). Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells. Micron32, 153–165.10.1016/S0968-4328(99)00106-7Search in Google Scholar
Dvorak, J.A. (2003). The application of atomic force microscopy to the study of living vertebrate cells in culture. Methods29, 86–96.10.1016/S1046-2023(02)00284-0Search in Google Scholar
Engel, A., and Muller, D.J. (2000). Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol.7, 715–718.10.1038/78929Search in Google Scholar
Girasole, M., Cricenti, A., Generosi, R., Congiu-Castellano, A., Boumis, G., and Amiconi, G. (2001). Artificially induced unusual shape of erythrocytes: an atomic force microscopy study. J. Microsc.204, 46–52.10.1046/j.1365-2818.2001.00937.xSearch in Google Scholar
Han, W., Lindsay, S.M., and Jing, T. (1996). A magnetically driven oscillating probe microscope for operation in liquid. Appl. Phys. Lett.69, 1–3.10.1063/1.117835Search in Google Scholar
Hinterdorfer, P. (2002). Molecular recognition studies using the atomic force microscope. Methods Cell Biol.68, 115–139.10.1016/S0091-679X(02)68007-0Search in Google Scholar
Hinterdorfer, P., Schilcher, K., Baumgartner, W., Gruber, H.J., and Schindler, H. (1998). A mechanistic study of the dissociation of individual antibody-antigen pairs by atomic force microscopy. Nanobiology4, 177–188.Search in Google Scholar
Horber, J.K., and Miles, M.J. (2003). Scanning probe evolution in biology. Science302, 1002–1005.10.1126/science.1067410Search in Google Scholar PubMed
Huss, R., Haas, C., Herrmann, M., Kalden, J.R., and Loehrs, U. (2000). Impairment of genomic DNA binding to a putative dysfunctional receptor on erythrocytes independent of complement and antibodies in systemic lupus erythematosus. Virchow’s Arch.437, 380–387.10.1007/s004280000256Search in Google Scholar PubMed
Kienberger, F., Stroh, C., Kada, G., Moser, R., Baumgartner, W., Pastushenko, V., Rankl, C., Schmidt, U., Muller, H., Orlova, E. et al. (2003). Dynamic force microscopy imaging of native membranes. Ultramicroscopy97, 229–237.10.1016/S0304-3991(03)00047-0Search in Google Scholar
Kienberger, F., Zhu, R., Moser, R., Rankl, C., Blaas, D., and Hinterdorfer, P. (2004). Dynamic force microscopy for imaging of viruses under physiological conditions. Biol. Proced. Online6, 120–128.10.1251/bpo80Search in Google Scholar
Klein, D.C., Stroh, C.M., Jensenius, H., van Es, M., Kamruzzahan, A.S., Stamouli, A., Gruber, H.J., Oosterkamp, T.H., and Hinterdorfer, P. (2003). Covalent immobilization of single proteins on mica for molecular recognition force microscopy. ChemPhysChem4, 1367–1371.10.1002/cphc.200300844Search in Google Scholar
Lantz, M., Liu, Y.Z., Cui, X.D., Tokumoto, H., and Lindsay, S.M. (1999). Dynamic force microscopy in fluids. Interface Anal.27, 354–360.10.1002/(SICI)1096-9918(199905/06)27:5/6<354::AID-SIA541>3.0.CO;2-4Search in Google Scholar
Lorenz, H.M., Herrmann, M. and Kalden, J.R. (2001). The pathogenesis of autoimmune diseases. Scand. J. Clin. Lab. Invest. (Suppl.) 235, 16–26.Search in Google Scholar
Muller, D.J., Schabert, F.A., Buldt, G., and Engel, A. (1995). Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys. J.68, 1681–1686.10.1016/S0006-3495(95)80345-0Search in Google Scholar
Nowakowski, R., Luckham, P., and Winlove, P. (2001). Imaging erythrocytes under physiological conditions by atomic force microscopy. Biochim. Biophys. Acta1514, 170–176.10.1016/S0005-2736(01)00365-0Search in Google Scholar
Putman, C.A.J., Vanderwerf, K.O., de Grooth, B.G., Vanhulst, N.F., and Greve, J. (1994). Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett.64, 2454–2456.10.1063/1.111597Search in Google Scholar
Radmacher, M. (2002). Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol.68, 67–90.10.1016/S0091-679X(02)68005-7Search in Google Scholar
Richaud-Patin, Y., Perez-Romano, B., Carillo-Maravilla, E., Rodriguez, P., Simon, A.J., Cabiedes, J., Jakez-Ocampo, J., Llorente, L. and Ruiz-Arguelles, M. (2003). Deficiency of red cell bound CD55 and CD59 in patients with systemic lupus erythematosus. Immunol. Lett.88, 95–99.10.1016/S0165-2478(03)00066-XSearch in Google Scholar
Salzer, U., Hinterdorfer, P., Hunger, U., Borken, C., and Prohaska, R. (2002). Ca2+-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin. Blood99, 2569–2577.10.1182/blood.V99.7.2569Search in Google Scholar
Schilcher, K., Hinterdorfer, P., Gruber, H. J., and Schindler, H. (1997). A non-invasive method for the tight anchoring of cells for scanning probe microscopy. Cell Biol. Int.21, 769–778.10.1006/cbir.1997.0221Search in Google Scholar
Swihart, A.H., Mikrut, J.M., Ketterson, J.B., and Macdonald, R.C. (2001). Atomic force microscopy of the erythrocyte membrane skeleton. J. Microsc.204, 212–225.10.1046/j.1365-2818.2001.00960.xSearch in Google Scholar
Takeuchi, M., Miyamoto, H., Sako, Y., Komizu, H., and Kusumi, A. (1998). Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys. J.74, 2171–2183.10.1016/S0006-3495(98)77926-3Search in Google Scholar
Touhami, A., Othmane, A., Ouerghi, O., Ben Ouada, H., Fretigny, C., and Jaffrezic-Renault, N. (2002). Red blood cells imaging and antigen-antibody interaction measurement. Biomol. Eng.19, 189–193.10.1016/S1389-0344(02)00045-XSearch in Google Scholar
Vie, V., Giocondi, M.C., Lesniewska, E., Finot, E., Goudonnet, J.P., and Le Grimellec, C. (2000). Tapping-mode atomic force microscopy on intact cells: optimal adjustment of tapping conditions by using the deflection signal. Ultramicroscopy82, 279–288.10.1016/S0304-3991(99)00137-0Search in Google Scholar
Wang, H., Bash, R., Yodh, J.G., Hager, G.L., Lohr, D., and Lindsay, S.M. (2002). Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. Biophys. J.83, 3619–3625.10.1016/S0006-3495(02)75362-9Search in Google Scholar
Weidner, N., and Lorentz, W. B. (1986). Scanning electron microscopy of the acellular glomerular and tubular basement membrane in lupus nephritis. Am. J. Clin. Pathol.85, 135–145.10.1093/ajcp/85.2.135Search in Google Scholar PubMed
© Walter de Gruyter