Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 5, 2005

P. falciparum pro-histoaspartic protease (proHAP) protein peptides bind specifically to erythrocytes and inhibit the invasion process in vitro

  • John Valbuena , Ricardo Vera , Alvaro Puentes , Marisol Ocampo , Javier Garcia , Hernando Curtidor , Ramses Lopez , Luis Rodriguez , Jaiver Rosas , Jimena Cortes , Martha Forero , Martha Pinto and Manuel Elkin Patarroyo
From the journal Biological Chemistry

Abstract

Plasmodium falciparum histoaspartic protease (HAP) is an active enzyme involved in haemoglobin degradation. HAP is expressed as an inactive 51-kDa zymogen and is cleaved into an active 37-kDa enzyme. It has been proposed that this kind of protease might be implicated in the parasite's invasion of erythrocytes; however, this protein's role during invasion has still to be determined. Synthetic peptides derived from the HAP precursor (proHAP) were tested in erythrocyte binding assays to identify their possible function in the invasion process. Two proHAP high-activity binding peptides (HABPs) specifically bound to erythrocytes; these peptides were numbered 30609 (101LKNYIKESVKLFNKGLTKKS120) and 30610 (121YLGSEFDNVELKDLANVLSF140). The binding of these two peptides was saturable, presenting nanomolar affinity constants. These peptides interacted with 26- and 45-kDa proteins on the erythrocyte surface; the nature of these receptor sites was studied in peptide binding assays using enzyme-treated erythrocytes. The HABPs showed greater than 90% merozoite invasion inhibition in in vitro assays. Goat serum containing proHAP polymeric peptide antibodies inhibited parasite invasion in vitro.

:

Corresponding author

References

Andreeva, N., Bogdanovich, P., Kashparov, I., Popov, M., and Stengach, M. (2004). Is histoaspartic protease a serine protease with a pepsin-like fold?Proteins55, 705–710.10.1002/prot.20078Search in Google Scholar

Banerjee, R., and Goldberg, D.E. (2001). The Plasmodium food vacuole. In: Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery, P.J. Rosenthal, ed. (Totowa, USA: Humana Press Inc.), pp. 43–63.10.1385/1-59259-111-6:43Search in Google Scholar

Banerjee, R., Liu, J., Beatty, W., Pelosof, L., Klemba, M., and Goldberg, D.E. (2002). Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc. Natl. Acad. Sci. USA99, 990–995.10.1073/pnas.022630099Search in Google Scholar

Banerjee, R., Francis, S.E., and Goldberg, D.E. (2003). Food vacuole plasmepsins are processed at a conserved site by an acidic convertase activity in Plasmodium falciparum. Mol. Biochem. Parasitol.129, 157–165.10.1016/S0166-6851(03)00119-1Search in Google Scholar

Barnwell, J. and Galinski, M.R. (1998). Invasion of Vertebrate Cells: Erythrocytes (Washington, DC, USA: American Society for Microbiology).Search in Google Scholar

Berry, C., Humphreys, M.J., Matharu, P., Granger, R., Horrocks, P., Moon, R.P., Certa, U., Ridley, R.G., Bur, D., and Ray, J. (1999). A distinct member of the aspartic proteinase gene family from the human malaria parasite Plasmodium falciparum. FEBS Lett.447, 149–154.10.1016/S0014-5793(99)00276-8Search in Google Scholar

Bozdech, Z. Llinas, M., Pulliam, B.L., Wong, E.D., Zhu, J., and DeRisi, J.L. (2003). The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol.1, 85–99.10.1371/journal.pbio.0000005Search in Google Scholar

Camus, D. and Hadley, T.J. (1985). A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science230, 553–556.10.1126/science.3901257Search in Google Scholar

Chitnis, C.E. (2001). Molecular insights into receptors used by malaria parasites for erythrocyte invasion. Curr. Opin. Hematol.8, 85–91.10.1097/00062752-200103000-00005Search in Google Scholar

Chitnis, C.E. and Blackman, M.J. (2000). Host cell invasion by malaria parasites. Parasitol. Today16, 411–415.10.1016/S0169-4758(00)01756-7Search in Google Scholar

Coombs, G.H., Goldberg, D.E., Klemba, M. Berry, C., Kay, J., and Mottram, J.C. (2001). Aspartic proteases of Plasmodium falciparum and parasitic protozoa as drug targets. Trends Parasitol.17, 532–537.10.1016/S1471-4922(01)02037-2Search in Google Scholar

Cubillos, M., Espejo, F., Purmova, J., Martinez, J.C., and Patarroyo, M.E. (2003). α-Helix shortening in 1522 MSP-1 conserved peptide analogs is associated with immunogenicity and protection against P. falciparum malaria. Proteins50, 400–409.10.1002/prot.10314Search in Google Scholar

Curtidor, H., Urquiza, M., Suarez, J.E., Rodriguez, L.E., Ocampo, M., Puentes, A., Garcia, J.E., Vera, R., Lopez, R., Ramirez, L.E., Pinzon, M., and Patarroyo, M.E. (2001). Plasmodium falciparum acid basic repeat antigen (ABRA) peptides: erythrocyte binding and biological activity. Vaccine19, 4496–4504.10.1016/S0264-410X(01)00202-XSearch in Google Scholar

Dame, J.B., Reddy, G.R., Yowell, C.A., Dunn, B.M., Kay, J., and Berry, C. (1994). Sequence, expression and modeled structure of an aspartic proteinase from the human malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol.64, 177–190.10.1016/0166-6851(94)90024-8Search in Google Scholar

Espejo, F., Cubillos, M., Salazar, L.M., Guzman, F., Urquiza, M., Ocampo, M., Silva, Y., Rodriguez, R., Lioy, E., and Patarroyo, M.E. (2001). Structure, immunogenicity, and protectivity relationship for the 1585 malarial peptide and its substitution analogues. Angew. Chem. Int. Ed.40, 4654–4657.10.1002/1521-3773(20011217)40:24<4654::AID-ANIE4654>3.0.CO;2-FSearch in Google Scholar

Francis, S.E., Gluzman, I.Y., Oksman, A., Knickerbocker, A., Mueller, R., Bryant, M.L., Sherman, D.R., and Russell, D.G. (1994). Goldberg, D.E. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J.13, 306–317.Search in Google Scholar

Francis, S.E., Banerjee, R., and Goldberg, D.E. (1997). Biosynthesis and maturation of the malaria aspartic hemoglobinases plasmepsins I and II. J. Biol. Chem.272, 14961–14968.10.1074/jbc.272.23.14961Search in Google Scholar

Fujioka, H., and Aikawa, M. (2002). Structure and life cycle. Chem. Immunol.80, 1–26.10.1159/000058837Search in Google Scholar

Good, M.F. (2001). Towards a blood-stage vaccine for malaria: are we following all the leads?Nat. Rev. Immunol.1, 117–125.10.1038/35100540Search in Google Scholar

Greenbaum, D.C., Baruch, A., Grainger, M., Bozdech, Z., Medzihradszky, K.F., Engel, J., DeRisi, J., Holder, A.A., and Bogyo, M. (2002). A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science298, 2002–2006.10.1126/science.1077426Search in Google Scholar

Houghten, R.A. (1985). General method for the rapid solid phase synthesis of large numbers of peptides: specificity of antigen antibody interaction at the level of individual amino acid. Proc. Nat. Acad. Sci. USA82, 5131–5135.10.1073/pnas.82.15.5131Search in Google Scholar

Johnson, W.C. (1999). Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins35, 307–312.10.1002/(SICI)1097-0134(19990515)35:3<307::AID-PROT4>3.0.CO;2-3Search in Google Scholar

Lambros, C., and Vanderberg, J.P. (1979). Synchronisation of Plasmodium falciparum erythrocyte stages in culture. J. Parasitol.65, 418–420.10.2307/3280287Search in Google Scholar

Merrifield, R.B. (1963). Solid phase peptide synthesis I. The synthesis of a tetrapeptide. J. Am. Chem. Soc.85, 2149–2154.10.1021/ja00897a025Search in Google Scholar

Nezami, A., Kimura, T., Hidaka, K., Kiso, A., Liu, J., Kiso, Y., Goldberg, D.E., and Freire, E. (2003). High-affinity inhibition of a family of Plasmodium falciparum proteases by a designed adaptive inhibitor. Biochemistry42, 8459–8464.10.1021/bi034131zSearch in Google Scholar

Nikodem, D. and Davison, E. (2000). Identification of novel antigen domain of Plasmodium falciparum merozoite surface protein 1 that specifically binds to human erythrocytes and inhibits parasite invasion in vitro. Mol. Biochem. Parasitol.108, 79–91.10.1016/S0166-6851(00)00206-1Search in Google Scholar

Nnaemeka, O.J., Pillai, C.R., and Chitnis, C.E. (1999). Plasmodium falciparum field isolates commonly use erythrocyte invasion pathways that are independent of sialic acid residues of glycophorin A. Infect. Immun.67, 5784–5791.Search in Google Scholar

Patarroyo, M.E., Amador, R., and Clavijo, P. (1988). A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature332, 158–161.10.1038/332158a0Search in Google Scholar

Provencher, S.W. and Glockner, J. (1981). Estimation of globular protein secondary structure from circular dichroism. Biochemistry20, 33–37.10.1021/bi00504a006Search in Google Scholar

Puentes, A., Garcia, J.E., Vera, R., Lopez, R., Urquiza, M., Vanegas, M., Salazar, L.M., and Patarroyo, M.E. (2000). Serine repeat antigen peptides which bind specifically to red blood cells. Parasitol. Int.49, 105–117.10.1016/S1383-5769(00)00040-4Search in Google Scholar

Purmova, J., Salazar, L.M., Espejo, F., Torres, M.H., Cubillos, M., Torres, E., Lopez, Y., Rodriguez, R., and Patarroyo, M.E. (2002). NMR structure of Plasmodium falciparum malaria peptide correlates with protective immunity. Biochim. Biophys. Acta1571, 27–33.10.1016/S0304-4165(02)00203-9Search in Google Scholar

Rodriguez, L.E., Urquiza, M., Ocampo, M., Suarez, J., Curtidor, H., Guzman, F., Vargas, L.E., Triviños, M., Rosas, M., and Patarroyo, M.E. (2000). Plasmodium falciparum EBA-175 kDa protein peptides which bind to human red blood cells. Parasitology120, 225–235.10.1017/S003118209900551XSearch in Google Scholar

Roggwiller, E., Morales, M.E., Blisnick, T., and Braun, C. (1996). A role for erythrocyte band 3 degradation by the parasite gp 76 serine protease in the formation of the parasitophorous vacuole during invasion of erythrocytes by Plasmodium falciparum. Mol. Biochem. Parasitol.82, 13–24.10.1016/0166-6851(96)02714-4Search in Google Scholar

Rosenthal, P. (1998). Proteases of malaria parasites: new targets for chemotherapy. Emerg. Infect. Dis.4, 49–57.10.3201/eid0401.980107Search in Google Scholar

Rosenthal, P.J. (1999). Proteases of protozoan parasites. Adv. Parasitol.43, 105–159.10.1016/S0065-308X(08)60242-0Search in Google Scholar

Salazar, L.M., Alba, M.P., Torres, M.H., Pinto, M., Cortes, X., Torres, L., and Patarroyo, M.E. (2002). Protection against experimental malaria associated with AMA-1 peptide analogue structures. FEBS Lett.527, 95–100.10.1016/S0014-5793(02)03174-5Search in Google Scholar

Sherman, I.W. (1985). Membrane structure and function of malaria parasites and the infected erythrocyte. Parasitology91, 609–645.10.1017/S0031182000062843Search in Google Scholar

Sreerama, N., and Woody, R.W. (2000). Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem.287, 252–260.10.1006/abio.2000.4880Search in Google Scholar

Sreerama, N., Venyaminov, S.Y., Woody, R.W. (1999). Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Sci.8, 370–380.Search in Google Scholar

Trager, W. and Jensen, J. (1976). Human malaria parasites in continuous culture. Science193, 673–675.10.1126/science.781840Search in Google Scholar

Urquiza, M., Rodriguez, L.E., Suarez, J., Guzman, F., Ocampo, M., Curtidor, H., Segura, C., Trujillo, E., and Patarroyo, M.E. (1996). Identification of Plasmodium falciparum MSP-1 peptides able to bind to human red blood cells. Parasite Immunol.18, 515–526.10.1046/j.1365-3024.1996.d01-15.xSearch in Google Scholar

Valbuena, J.J., Vera, R., Garcia, J., Puentes, A., Curtidor, H., Ocampo, M., Urquiza, M., Rivera, Z., Guzman, F., and Torres, E. (2003). Plasmodium falciparum normocyte binding protein (PfNBP-1) peptides bind specifically to human erythrocytes. Peptides24, 1007–1014.10.1016/S0196-9781(03)00186-4Search in Google Scholar

Wyatt, C.R., Goff, W., and Davis, W.C. (1991). A flow cytometric method for assessing viability of intraerythrocytic hemoparasites. J. Immunol. Methods140, 23–30.10.1016/0022-1759(91)90122-VSearch in Google Scholar

Wahlgren, M., and Perlmann, P. (1999). Malaria, Molecular and Clinical Aspects (Singapore: Harwood Academic Publishers).10.1201/b17000Search in Google Scholar

World Health Organization (2002). WHO Report (http://www.who.int/infectious-disease-report/2002/index.html).Search in Google Scholar

Published Online: 2005-07-05
Published in Print: 2005-04-01

© by Walter de Gruyter Berlin New York

Downloaded on 29.2.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2005.043/html
Scroll to top button