Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 2, 2006

Glutathione peroxidases and redox-regulated transcription factors

Regina Brigelius-Flohé
From the journal

Abstract

Analysis of the selenoproteome identified five glutathione peroxidases (GPxs) in mammals: cytosolic GPx (cGPx, GPx1), phospholipid hydroperoxide GPx (PHGPX, GPx4), plasma GPx (pGPX, GPx3), gastrointestinal GPx (GI-GPx, GPx2) and, in humans, GPx6, which is restricted to the olfactory system. GPxs reduce hydroperoxides to the corresponding alcohols by means of glutathione (GSH). They have long been considered to only act as antioxidant enzymes. Increasing evidence, however, suggests that nature has not created redundant GPxs just to detoxify hydroperoxides. cGPx clearly acts as an antioxidant, as convincingly demonstrated in GPx1-knockout mice. PHGPx specifically interferes with NF-κB activation by interleukin-1, reduces leukotriene and prostanoid biosynthesis, prevents COX-2 expression, and is indispensable for sperm maturation and embryogenesis. GI-GPx, which is not exclusively expressed in the gastrointestinal system, is upregulated in colon and skin cancers and in certain cultured cancer cells. GI-GPx is a target for Nrf2, and thus is part of the adaptive response by itself, while PHGPx might prevent cancer by interfering with inflammatory pathways. In conclusion, cGPx, PHGPx and GI-GPx have distinct roles, particularly in cellular defence mechanisms. Redox sensing and redox regulation of metabolic events have become attractive paradigms to unravel the specific and in part still enigmatic roles of GPxs.

:

References

Al-Taie, O.H., Uceyler, N., Eubner, U., Jakob, F., Mork, H., Scheurlen, M., Brigelius-Flohé, R., Schottker, K., Abel, J., Thalheimer, A., et al. (2004). Expression profiling and genetic alterations of the selenoproteins GI-GPx and SePP in colorectal carcinogenesis. Nutr. Cancer48, 6–14.10.1207/s15327914nc4801_2Search in Google Scholar

Banning, A. and Brigelius-Flohé, R. (2005). NF-κB, Nrf2 and HO-1 interplay in redox-regulated VCAM-1 expression. Antioxid. Redox Signal.7, 889–899.10.1089/ars.2005.7.889Search in Google Scholar

Banning, A., Schnurr, K., Böl, G.F., Kupper, D., Müller-Schmehl, K., Viita, H., Ylä-Herttuala, S., and Brigelius-Flohé, R. (2004). Inhibition of basal and interleukin-1-induced vcam-1 expression by phospholipid hydroperoxide glutathione peroxidase and 15-lipoxygenase in rabbit aortic smooth muscle cells. Free Radic. Biol. Med.36, 135–144.10.1016/j.freeradbiomed.2003.10.027Search in Google Scholar

Banning, A., Deubel, S., Kluth, D., Zhou, Z., and Brigelius-Flohé, R. (2005). The GI-GPx gene is a target for Nrf2. Mol. Cell. Biol.25, 4914–4923.10.1128/MCB.25.12.4914-4923.2005Search in Google Scholar

Banning, A., Thalmann, S., Deubel, S., and Brigelius-Flohé, R. (2006). COX-2 expression is controlled by GPx2. In: Mosbach Colloquium. Meeting abstract 57. DOI: 10.1240/sav_gbm_2006_m_001576.10.1240/sav_gbm_2006_m_001576Search in Google Scholar

Bermano, G., Nicol, F., Dyer, J.A., Sunde, R.A., Beckett, G.J., Arthur, J.R., and Hesketh, J.E. (1995). Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem. J.311, 425–430.10.1042/bj3110425Search in Google Scholar

Brigelius-Flohé, R. (1999). Tissue-specific functions of individual glutathione peroxidases. Free Radic. Biol. Med.27, 951–965.10.1016/S0891-5849(99)00173-2Search in Google Scholar

Brigelius-Flohé, R. and Banning, A. (2006). Sulforaphane and selenium, partners in adaptive response and prevention of cancer. Free Radic. Res.40, 775–787.10.1080/10715760600722643Search in Google Scholar

Brigelius-Flohé, R., Friedrichs, B., Maurer, S., Schultz, M., and Streicher, R. (1997). Interleukin-1-induced nuclear factor κB activation is inhibited by overexpression of phospholipid hydroperoxide glutathione peroxidase in a human endothelial cell line. Biochem. J.328, 199–203.10.1042/bj3280199Search in Google Scholar

Brigelius-Flohé, R., Maurer, S., Lötzer, K., Böl, G., Kallionpää, H., Lehtolainen, P., Viita, H., and Ylä-Herttuala, S. (2000). Overexpression of PHGPx inhibits hydroperoxide-induced oxidation, NF-κB activation and apoptosis and affects oxLDL-mediated proliferation of rabbit aortic smooth muscle cells. Atherosclerosis152, 307–316.10.1016/S0021-9150(99)00486-4Search in Google Scholar

Brigelius-Flohé, R., Müller, C., Menard, J., Florian, S., Schmehl, K., and Wingler, K. (2001). Functions of GI-GPx: lessons from selenium-dependent expression and intracellular localization. Biofactors14, 101–106.10.1002/biof.5520140114Search in Google Scholar

Chen, C.J., Huang, H.S., and Chang, W.C. (2002). Inhibition of arachidonate metabolism in human epidermoid carcinoma a431 cells overexpressing phospholipid hydroperoxide glutathione peroxidase. J. Biomed. Sci.9, 453–459.10.1007/BF02256540Search in Google Scholar

Cheng, W.H., Ho, Y.S., Valentine, B.A., Ross, D.A., Combs, G.F. Jr., and Lei, X.G. (1998). Cellular glutathione peroxidase is the mediator of body selenium to protect against paraquat lethality in transgenic mice. J. Nutr.128, 1070–1076.10.1093/jn/128.7.1070Search in Google Scholar

Chiarugi, P. (2005). PTPs versus PTKs: the redox side of the coin. Free Radic. Res.39, 353–364.10.1080/10715760400027987Search in Google Scholar

Cho, H.Y., Reddy, S.P., Debiase, A., Yamamoto, M., and Kleeberger, S.R. (2005). Gene expression profiling of NRF2-mediated protection against oxidative injury. Free Radic. Biol. Med.38, 325–343.10.1016/j.freeradbiomed.2004.10.013Search in Google Scholar

Chu, F.F., Doroshow, J.H., and Esworthy, R.S. (1993). Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J. Biol. Chem.268, 2571–2576.10.1016/S0021-9258(18)53812-6Search in Google Scholar

Chu, F.F., Esworthy, R.S., Lee, L., and Wilczynski, S. (1999). Retinoic acid induces Gpx2 gene expression in MCF-7 human breast cancer cells. J. Nutr.129, 1846–1854.10.1093/jn/129.10.1846Search in Google Scholar PubMed

Chu, F.F., Esworthy, R.S., Chu, P.G., Longmate, J.A., Huycke, M.M., Wilczynski, S., and Doroshow, J.H. (2004a). Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res.64, 962–968.10.1158/0008-5472.CAN-03-2272Search in Google Scholar

Chu, F.F., Esworthy, R.S., and Doroshow, J.H. (2004b). Role of Se-dependent glutathione peroxidases in gastrointestinal inflammation and cancer. Free Radic. Biol. Med.36, 1481–1495.10.1016/j.freeradbiomed.2004.04.010Search in Google Scholar PubMed

Combs, G.F., Jr., Clark, L.C., and Turnbull, B.W. (2001). An analysis of cancer prevention by selenium. Biofactors14, 153–159.10.1002/biof.5520140120Search in Google Scholar PubMed

Conrad, M., Moreno, S.G., Sinowatz, F., Ursini, F., Kolle, S., Roveri, A., Brielmeier, M., Wurst, W., Maiorino, M., and Bornkamm, G.W. (2005). The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol. Cell. Biol.25, 7637–7644.10.1128/MCB.25.17.7637-7644.2005Search in Google Scholar

Cowan, D.B., Weisel, R.D., Williams, W.G., and Mickle, D.A. (1993). Identification of oxygen responsive elements in the 5′-flanking region of the human glutathione peroxidase gene. J. Biol. Chem.268, 26904–26910.10.1016/S0021-9258(19)74196-9Search in Google Scholar

de Jesus, L.A., Hoffmann, P.R., Michaud, T., Forry, E.P., Small-Howard, A., Stillwell, R.J., Morozova, N., Harney, J.W., and Berry, M.J. (2006). Nuclear assembly of UGA decoding complexes on selenoprotein mRNAs: a mechanism for eluding nonsense-mediated decay? Mol. Cell. Biol.26, 1795–1805.10.1128/MCB.26.5.1795-1805.2006Search in Google Scholar

Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., and Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell111, 471–481.10.1016/S0092-8674(02)01048-6Search in Google Scholar

Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev.82, 47–95.10.1152/physrev.00018.2001Search in Google Scholar

Dumitrescu, A.M., Liao, X.H., Abdullah, M.S., Lado-Abeal, J., Majed, F.A., Moeller, L.C., Boran, G., Schomburg, L., Weiss, R.E., and Refetoff, S. (2005). Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat. Genet.37, 1247–1252.10.1038/ng1654Search in Google Scholar

Esworthy, R.S., Mann, J.R., Sam, M., and Chu, F.F. (2000). Low glutathione peroxidase activity in Gpx1 knockout mice protects jejunum crypts from gamma-irradiation damage. Am. J. Physiol. Gastrointest. Liver Physiol.279, G426–G436.Search in Google Scholar

Esworthy, R.S., Aranda, R., Martin, M.G., Doroshow, J.H., Binder, S.W., and Chu, F.F. (2001). Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am. J. Physiol. Gastrointest. Liver Physiol.281, G848–G855.Search in Google Scholar

Esworthy, R.S., Binder, S.W., Doroshow, J.H., and Chu, F. (2003). Microflora trigger colitis in mice deficient in selenium-dependent glutathione peroxidase and induce Gpx2 gene expression. Biol. Chem.384, 597–607.10.1515/BC.2003.067Search in Google Scholar

Esworthy, R.S., Yang, L., Frankel, P.H., and Chu, F.F. (2005). Epithelium-specific glutathione peroxidase, Gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice. J. Nutr.135, 740–745.10.1093/jn/135.4.740Search in Google Scholar

Finkel, T. (2003). Oxidant signals and oxidative stress. Curr. Opin. Cell Biol.15, 247–254.10.1016/S0955-0674(03)00002-4Search in Google Scholar

Flohé, L. and Brigelius-Flohé, R. (2006). Selenoproteins of the glutathione system. In: Selenium: Its Molecular Biology and Role in Human Health, 2nd Edition, D.L. Hatfield, ed. (Dordrecht, The Netherlands: Kluwer Academic Publishers), in press.Search in Google Scholar

Florian, S., Wingler, K., Schmehl, K., Jacobasch, G., Kreuzer, O.J., Meyerhof, W., and Brigelius-Flohé, R. (2001). Cellular and subcellular localization of gastrointestinal glutathione peroxidase in normal and malignant human intestinal tissue. Free Radic. Res.35, 655–663.10.1080/10715760100301181Search in Google Scholar PubMed

Ghezzi, P. (2005). Regulation of protein function by glutathionylation. Free Radic. Res.39, 573–580.10.1080/10715760500072172Search in Google Scholar

Greten, F.R., Eckmann, L., Greten, T.F., Park, J.M., Li, Z.W., Egan, L.J., Kagnoff, M.F., and Karin, M. (2004). IKKκ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell118, 285–296.10.1016/j.cell.2004.07.013Search in Google Scholar

Hattori, H., Imai, H., Furuhama, K., Sato, O., and Nakagawa, Y. (2005a). Induction of phospholipid hydroperoxide glutathione peroxidase in human polymorphonuclear neutrophils and HL60 cells stimulated with TNF-α. Biochem. Biophys. Res. Commun.337, 464–473.10.1016/j.bbrc.2005.09.076Search in Google Scholar

Hattori, H., Imai, H., Hanamoto, A., Furuhama, K., and Nakagawa, Y. (2005b). Up-regulation of phospholipid hydroperoxide glutathione peroxidase in rat casein-induced polymorphonuclear neutrophils. Biochem. J.389, 279–287.10.1042/BJ20050006Search in Google Scholar

Haurand, M. and Flohé, L. (1988). Kinetic studies on arachidonate 5-lipoxygenase from rat basophilic leukemia cells. Biol. Chem. Hoppe-Seyler369, 133–142.10.1515/bchm3.1988.369.1.133Search in Google Scholar

Heirman, I., Ginneberge, D., Brigelius-Flohe, R., Hendrickx, N., Agostinis, P., Brouckaert, P., Rottiers, P., and Grooten, J. (2006). Blocking tumor cell eicosanoid synthesis by GPx4 impedes tumor growth and malignancy. Free Radic. Biol. Med.40, 285–294.10.1016/j.freeradbiomed.2005.08.033Search in Google Scholar

Ho, Y.S., Magnenat, J.L., Bronson, R.T., Cao, J., Gargano, M., Sugawara, M., and Funk, C.D. (1997). Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J. Biol. Chem.272, 16644–16651.10.1074/jbc.272.26.16644Search in Google Scholar

Imai, H., Narashima, K., Arai, M., Sakamoto, H., Chiba, N., and Nakagawa, Y. (1998). Suppression of leukotriene formation in RBL-2H3 cells that overexpressed phospholipid hydroperoxide glutathione peroxidase. J. Biol. Chem.273, 1990–1997.10.1074/jbc.273.4.1990Search in Google Scholar

Imai, H., Hirao, F., Sakamoto, T., Sekine, K., Mizukura, Y., Saito, M., Kitamoto, T., Hayasaka, M., Hanaoka, K., and Nakagawa, Y. (2003). Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem. Biophys. Res. Commun.305, 278–286.10.1016/S0006-291X(03)00734-4Search in Google Scholar

Imai, H. and Nakagawa, Y. (2003). Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic. Biol. Med.34, 145–169.10.1016/S0891-5849(02)01197-8Search in Google Scholar

Kryukov, G.V., Castellano, S., Novoselov, S.V., Lobanov, A.V., Zehtab, O., Guigó, R., and Gladyshev, V.N. (2003). Characterization of mammalian selenoproteomes. Science300, 1439–1443.10.1126/science.1083516Search in Google Scholar PubMed

Lei, X.G., Evenson, J.K., Thompson, K.M., and Sunde, R.A. (1995). Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J. Nutr.125, 1438–1446.Search in Google Scholar

Li, Q., Withoff, S., and Verma, I.M. (2005). Inflammation-associated cancer: NF-κB is the lynchpin. Trends Immunol.26, 318–325.10.1016/j.it.2005.04.003Search in Google Scholar PubMed

Li, S., Yan, T., Yang, J.Q., Oberley, T.D., and Oberley, L.W. (2000). The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res.60, 3927–3939.Search in Google Scholar

Lin, Y.M., Furukawa, Y., Tsunoda, T., Yue, C.T., Yang, K.C., and Nakamura, Y. (2002). Molecular diagnosis of colorectal tumors by expression profiles of 50 genes expressed differentially in adenomas and carcinomas. Oncogene21, 4120–4128.10.1038/sj.onc.1205518Search in Google Scholar PubMed

Lu, Y.P., Lou, Y.R., Yen, P., Newmark, H.L., Mirochnitchenko, O.I., Inouye, M., and Huang, M.T. (1997). Enhanced skin carcinogenesis in transgenic mice with high expression of glutathione peroxidase or both glutathione peroxidase and superoxide dismutase. Cancer Res.57, 1468–1474.Search in Google Scholar

Luo, J.L., Maeda, S., Hsu, L.C., Yagita, H., and Karin, M. (2004). Inhibition of NF-κB in cancer cells converts inflammation-induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression. Cancer Cell6, 297–305.10.1016/j.ccr.2004.08.012Search in Google Scholar PubMed

Mauri, P., Benazzi, L., Flohé, L., Maiorino, M., Pietta, P.G., Pilawa, S., Roveri, A., and Ursini, F. (2003). Versatility of selenium catalysis in PHGPx unraveled by LC/ESI-MS/MS. Biol. Chem.384, 575–588.10.1515/BC.2003.065Search in Google Scholar PubMed

McClung, J.P., Roneker, C.A., Mu, W., Lisk, D.J., Langlais, P., Liu, F., and Lei, X.G. (2004). Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc. Natl. Acad. Sci. USA101, 8852–88527.10.1073/pnas.0308096101Search in Google Scholar PubMed PubMed Central

Morbitzer, M. and Herget, T. (2005). Expression of gastrointestinal glutathione peroxidase is inversely correlated to the presence of hepatitis C virus subgenomic RNA in human liver cells. J. Biol. Chem.280, 8831–8841.10.1074/jbc.M413730200Search in Google Scholar PubMed

Moriarty, P.M., Reddy, C.C., and Maquat, L.E. (1998). Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol. Cell. Biol.18, 2932–2939.10.1128/MCB.18.5.2932Search in Google Scholar PubMed PubMed Central

Mörk, H., Al-Taie, O.H., Bähr, K., Zierer, A., Beck, C., Scheurlen, M., Jakob, F., and Köhrle, J. (2000). Inverse mRNA expression of the selenocysteine-containing proteins GI-GPx and SeP in colorectal adenomas compared with adjacent normal mucosa. Nutr. Cancer37, 108–116.10.1207/S15327914NC3701_14Search in Google Scholar PubMed

Mörk, H., Scheurlen, M., Al-Taie, O., Zierer, A., Kraus, M., Schöttker, K., Jakob, F., and Köhrle, J. (2003). Glutathione peroxidase isoforms as part of the local antioxidative defense system in normal and Barrett's esophagus. Int. J. Cancer105, 300–304.10.1002/ijc.11087Search in Google Scholar PubMed

Müller, C., Wingler, K., and Brigelius-Flohé, R. (2003). 3'UTRs of glutathione peroxidases differentially affect selenium-dependent mRNA stabilities and selenocysteine incorporation efficiency. Biol. Chem.384, 11–18.10.1515/BC.2003.002Search in Google Scholar PubMed

O'Brian, C.A. and Chu, F. (2005). Post-translational disulfide modifications in cell signaling-role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission. Free Radic. Res.39, 471–480.10.1080/10715760500073931Search in Google Scholar PubMed

Pikarsky, E., Porat, R.M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., Gutkovich-Pyest, E., Urieli-Shoval, S., Galun, E., and Ben-Neriah, Y. (2004). NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature431, 461–466.10.1038/nature02924Search in Google Scholar PubMed

Rhee, S.G., Chang, T.S., Bae, Y.S., Lee, S.R., and Kang, S.W. (2003). Cellular regulation by hydrogen peroxide. J. Am. Soc. Nephrol.14, S211–S215.10.1097/01.ASN.0000077404.45564.7ESearch in Google Scholar

Rueckschloss, U., Duerrschmidt, N., and Morawietz, H. (2003). NADPH oxidase in endothelial cells: impact on atherosclerosis. Antioxid. Redox Signal.5, 171–180.10.1089/152308603764816532Search in Google Scholar PubMed

Sakamoto, H., Imai, H., and Nakagawa, Y. (2000). Involvement of phospholipid hydroperoxide glutathione peroxidase in the modulation of prostaglandin D2 synthesis. J. Biol. Chem.275, 40028–40035.10.1074/jbc.M003191200Search in Google Scholar PubMed

Schnurr, K., Belkner, J., Ursini, F., Schewe, T., and Kuhn, H. (1996). The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. J. Biol. Chem.271, 4653–4658.10.1074/jbc.271.9.4653Search in Google Scholar PubMed

Serewko, M.M., Popa, C., Dahler, A.L., Smith, L., Strutton, G.M., Coman, W., Dicker, A.J., and Saunders, N.A. (2002). Alterations in gene expression and activity during squamous cell carcinoma development. Cancer Res.62, 3759–3765.Search in Google Scholar

Singh, A., Rangasamy, T., Thimmulappa, R.K., Lee, H., Osburn, W.O., Brigelius-Flohé, R., Kensler, T.W., Yamamoto, M., and Biswal, S. (2006). Glutathione peroxidase 2, the major cigarette smoke-inducible isoform of GPX in lungs is regulated by Nrf2. Am. J. Respir. Cell Mol. Biol., in press.10.1165/rcmb.2005-0325OCSearch in Google Scholar PubMed PubMed Central

Sun, X., Moriarty, P.M., and Maquat, L.E. (2000). Nonsense-mediated decay of glutathione peroxidase 1 mRNA in the cytoplasm depends on intron position. EMBO J.19, 4734–4744.10.1093/emboj/19.17.4734Search in Google Scholar PubMed PubMed Central

Tan, M., Li, S., Swaroop, M., Guan, K., Oberley, L.W., and Sun, Y. (1999). Transcriptional activation of the human glutathione peroxidase promoter by p53. J. Biol. Chem.274, 12061–12066.10.1074/jbc.274.17.12061Search in Google Scholar PubMed

Thimmulappa, R.K., Mai, K.H., Srisuma, S., Kensler, T.W., Yamamoto, M., and Biswal, S. (2002). Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res.62, 5196–5203.Search in Google Scholar

Ufer, C., Borchert, A., and Kuhn, H. (2003). Functional characterization of cis- and trans-regulatory elements involved in expression of phospholipid hydroperoxide glutathione peroxidase. Nucleic Acids Res.31, 4293–4303.10.1093/nar/gkg650Search in Google Scholar

Ursini, F., Heim, S., Kiess, M., Maiorino, M., Roveri, A., Wissing, J., and Flohé, L. (1999). Dual function of the selenoprotein PHGPx during sperm maturation. Science285, 1393–1396.10.1126/science.285.5432.1393Search in Google Scholar

van de Wetering, M., Sancho, E., Verweij, C., de Lau, W., Oving, I., Hurlstone, A., van der Horn, K., Batlle, E., Coudreuse, D., Haramis, A.P., et al. (2002). The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell111, 241–250.10.1016/S0092-8674(02)01014-0Search in Google Scholar

Weitzel, F. and Wendel, A. (1993). Selenoenzymes regulate the activity of leukocyte 5-lipoxygenase via the peroxide tone. J. Biol. Chem.268, 6288–6292.10.1016/S0021-9258(18)53251-8Search in Google Scholar

Wenk, J., Schuller, J., Hinrichs, C., Syrovets, T., Azoitei, N., Podda, M., Wlaschek, M., Brenneisen, P., Schneider, L.A., Sabiwalsky, A., et al. (2004). Overexpression of phospholipid-hydroperoxide glutathione peroxidase in human dermal fibroblasts abrogates UVA irradiation-induced expression of interstitial collagenase/matrix metalloproteinase-1 by suppression of phosphatidylcholine hydroperoxide-mediated NF-κB activation and interleukin-6 release. J. Biol. Chem.279, 45634–45642.10.1074/jbc.M408893200Search in Google Scholar

Wingler, K., Böcher, M., Flohé, L., Kollmus, H., and Brigelius-Flohé, R. (1999). mRNA stability and selenocysteine insertion sequence efficiency rank gastrointestinal glutathione peroxidase high in the hierarchy of selenoproteins. Eur. J. Biochem.259, 149–157.10.1046/j.1432-1327.1999.00012.xSearch in Google Scholar

Xia, Y., Hill, K.E., Byrne, D.W., Xu, J., and Burk, R.F. (2005). Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr.81, 829–834.10.1093/ajcn/81.4.829Search in Google Scholar

Yan, W. and Chen, X. (2006). GPX2, a direct target of p63, inhibits oxidative stress-induced apoptosis in a p53-dependent manner. J. Biol. Chem.281, 7856–7862.10.1074/jbc.M512655200Search in Google Scholar

Yang, A., Schweitzer, R., Sun, D., Kaghad, M., Walker, N., Bronson, R.T., Tabin, C., Sharpe, A., Caput, D., Crum, C., and McKeon, F. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature398, 714–718.10.1038/19539Search in Google Scholar

Yant, L.J., Ran, Q., Rao, L., Van Remmen, H., Shibatani, T., Belter, J.G., Motta, L., Richardson, A., and Prolla, T.A. (2003). The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med.34, 496–502.10.1016/S0891-5849(02)01360-6Search in Google Scholar

Published Online: 2006-11-02
Published in Print: 2006-10-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 1.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/BC.2006.166/html
Scroll Up Arrow