Accessible Requires Authentication Published by De Gruyter November 2, 2006

Redox regulation of the hypoxia-inducible factor

Jacques Pouysségur and Fatima Mechta-Grigoriou
From the journal

Abstract

Reactive oxygen species (ROS) have long been considered only as cyto- and genotoxic. However, there is now compelling evidence that ROS also act as second messengers in response to various stimuli, such as growth factors, hormones and cytokines. The hypoxia-inducible transcription factor (HIF) is a master regulator of oxygen-sensitive gene expression. More recently, HIF has also been shown to respond to non-hypoxic stimuli. Interestingly, recent reports indicate that ROS regulate HIF stability and transcriptional activity in well-oxygenated cells, as well as under hypoxic conditions. Consequently, ROS appear to be key players in regulating HIF-dependent pathways under both normal and pathological circumstances. This review summarizes the current understanding of the role of ROS in the regulation of the mammalian HIF system.

:

Corresponding author

References

Aebersold, D.M., Burri, P., Beer, K.T., Laissue, J., Djonov, V., Greiner, R.H., and Semenza, G.L. (2001). Expression of hypoxia-inducible factor-1α: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res.61, 2911–2916. Search in Google Scholar

Agani, F.H., Pichiule, P., Chavez, J.C., and LaManna, J.C. (2000). The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J. Biol. Chem.275, 35863–35867. Search in Google Scholar

Agani, F.H., Puchowicz, M., Chavez, J.C., Pichiule, P., and LaManna, J. (2002). Role of nitric oxide in the regulation of HIF-1α expression during hypoxia. Am. J. Physiol. Cell Physiol.283, C178–C186. Search in Google Scholar

Akeno, N., Robins, J., Zhang, M., Czyzyk-Krzeska, M.F., and Clemens, T.L. (2002). Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2α. Endocrinology143, 420–425. Search in Google Scholar

Appelhoff, R.J., Tian, Y.M., Raval, R.R., Turley, H., Harris, A.L., Pugh, C.W., Ratcliffe, P.J., and Gleadle, J.M. (2004). Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem.279, 38458–38465. Search in Google Scholar

Aprelikova, O., Chandramouli, G.V., Wood, M., Vasselli, J.R., Riss, J., Maranchie, J.K., Linehan, W.M., and Barrett, J.C. (2004). Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors. J. Cell Biochem.92, 491–501. Search in Google Scholar

Arbiser, J.L., Petros, J., Klafter, R., Govindajaran, B., McLaughlin, E.R., Brown, L.F., Cohen, C., Moses, M., Kilroy, S., Arnold, R.S., and Lambeth, J.D. (2002). Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc. Natl. Acad. Sci. USA99, 715–720. Search in Google Scholar

Babior, B.M. (2004). NADPH oxidase. Curr. Opin. Immunol.16, 42–47. Search in Google Scholar

Berra, E., Benizri, E., Ginouves, A., Volmat, V., Roux, D., and Pouyssegur, J. (2003). HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia. EMBO J.22, 4082–4090. Search in Google Scholar

Blancher, C., Moore, J.W., Robertson, N., and Harris, A.L. (2001). Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1α, HIF-2α, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res.61, 7349–7355. Search in Google Scholar

Bokoch, G.M. and Knaus, U.G. (2003). NADPH oxidases: not just for leukocytes anymore! Trends Biochem. Sci.28, 502–508. Search in Google Scholar

Brauchle, M., Funk, J.O., Kind, P., and Werner, S. (1996). Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured keratinocytes. J. Biol. Chem.271, 21793–21797. Search in Google Scholar

Bruick, R.K. and McKnight, S.L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science294, 1337–1340. Search in Google Scholar

Brunelle, J.K., Bell, E.L., Quesada, N.M., Vercauteren, K., Tiranti, V., Zeviani, M., Scarpulla, R.C., and Chandel, N.S. (2005). Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab.1, 409–414. Search in Google Scholar

Callapina, M., Zhou, J., Schnitzer, S., Metzen, E., Lohr, C., Deitmer, J.W., and Brune, B. (2005). Nitric oxide reverses desferrioxamine- and hypoxia-evoked HIF-1α accumulation – implications for prolyl hydroxylase activity and iron. Exp. Cell Res.306, 274–284. Search in Google Scholar

Chan, D.A., Sutphin, P.D., Denko, N.C., and Giaccia, A.J. (2002). Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1α. J. Biol. Chem.277, 40112–40117. Search in Google Scholar

Chandel, N.S., Maltepe, E., Goldwasser, E., Mathieu, C.E., Simon, M.C., and Schumacker, P.T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA95, 11715–11720. Search in Google Scholar

Chandel, N.S., McClintock, D.S., Feliciano, C.E., Wood, T.M., Melendez, J.A., Rodriguez, A.M., and Schumacker, P.T. (2000). Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem.275, 25130–25138. Search in Google Scholar

del Peso, L., Castellanos, M.C., Temes, E., Martin-Puig, S., Cuevas, Y., Olmos, G., and Landazuri, M.O. (2003). The von Hippel Lindau/hypoxia-inducible factor (HIF) pathway regulates the transcription of the HIF-proline hydroxylase genes in response to low oxygen. J. Biol. Chem.278, 48690–48695. Search in Google Scholar

Doege, K., Heine, S., Jensen, I., Jelkmann, W., and Metzen, E. (2005). Inhibition of mitochondrial respiration elevates oxygen concentration but leaves regulation of hypoxia-inducible factor (HIF) intact. Blood106, 2311–2317. Search in Google Scholar

Duyndam, M.C., Hulscher, T.M., Fontijn, D., Pinedo, H.M., and Boven, E. (2001). Induction of vascular endothelial growth factor expression and hypoxia-inducible factor 1α protein by the oxidative stressor arsenite. J. Biol. Chem.276, 48066–48076. Search in Google Scholar

Emerling, B.M., Platanias, L.C., Black, E., Nebreda, A.R., Davis, R.J., and Chandel, N.S. (2005). Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling. Mol. Cell. Biol.25, 4853–4862. Search in Google Scholar

Enomoto, N., Koshikawa, N., Gassmann, M., Hayashi, J., and Takenaga, K. (2002). Hypoxic induction of hypoxia-inducible factor-1α and oxygen-regulated gene expression in mitochondrial DNA-depleted HeLa cells. Biochem. Biophys. Res. Commun.297, 346–352. Search in Google Scholar

Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell107, 43–54. Search in Google Scholar

Fandrey, J., Frede, S., and Jelkmann, W. (1994). Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem. J.303, 507–510. Search in Google Scholar

Fukuda, R., Hirota, K., Fan, F., Jung, Y.D., Ellis, L.M., and Semenza, G.L. (2002). Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J. Biol. Chem.277, 38205–38211. Search in Google Scholar

Gao, N., Ding, M., Zheng, J.Z., Zhang, Z., Leonard, S.S., Liu, K.J., Shi, X., and Jiang, B.H. (2002a). Vanadate-induced expression of hypoxia-inducible factor 1α and vascular endothelial growth factor through phosphatidylinositol 3-kinase/Akt pathway and reactive oxygen species. J. Biol. Chem.277, 31963–31971. Search in Google Scholar

Gao, N., Jiang, B.H., Leonard, S.S., Corum, L., Zhang, Z., Roberts, J.R., Antonini, J., Zheng, J.Z., Flynn, D.C., Castranova, V., and Shi, X. (2002b). p38 signaling-mediated hypoxia-inducible factor 1α and vascular endothelial growth factor induction by Cr(VI) in DU145 human prostate carcinoma cells. J. Biol. Chem.277, 45041–45048. Search in Google Scholar

Gao, N., Shen, L., Zhang, Z., Leonard, S.S., He, H., Zhang, X.G., Shi, X., and Jiang, B.H. (2004). Arsenite induces HIF-1α and VEGF through PI3K, Akt and reactive oxygen species in DU145 human prostate carcinoma cells. Mol. Cell. Biochem.255, 33–45. Search in Google Scholar

Gerald, D., Berra, E., Frapart, Y.M., Chan, D.A., Giaccia, A.J., Mansuy, D., Pouyssegur, J., Yaniv, M., and Mechta-Grigoriou, F. (2004). JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell118, 781–794. Search in Google Scholar

Giaccia, A., Siim, B.G., and Johnson, R.S. (2003). HIF-1 as a target for drug development. Nat. Rev. Drug Discov.2, 803–811. Search in Google Scholar

Gorlach, A., Diebold, I., Schini-Kerth, V.B., Berchner-Pfannschmidt, U., Roth, U., Brandes, R.P., Kietzmann, T., and Busse, R. (2001). Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: role of the p22(phox)-containing NADPH oxidase. Circ. Res.89, 47–54. Search in Google Scholar

Goyal, P., Weissmann, N., Grimminger, F., Hegel, C., Bader, L., Rose, F., Fink, L., Ghofrani, H.A., Schermuly, R.T., Schmidt, H.H., Seeger, W., and Hanze, J. (2004). Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species. Free Radic. Biol. Med.36, 1279–1288. Search in Google Scholar

Grugel, S., Finkenzeller, G., Weindel, K., Barleon, B., and Marme, D. (1995). Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J. Biol. Chem.270, 25915–25919. Search in Google Scholar

Guzy, R.D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K.D., Simon, M.C., Hammerling, U., and Schumacker, P.T. (2005). Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab.1, 401–408. Search in Google Scholar

Haddad, J.J. and Land, S.C. (2001). A non-hypoxic, ROS-sensitive pathway mediates TNF-α-dependent regulation of HIF-1α. FEBS Lett.505, 269–274. Search in Google Scholar

Hagen, T., Taylor, C.T., Lam, F., and Moncada, S. (2003). Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α. Science302, 1975–1978. Search in Google Scholar

Hellwig-Burgel, T., Rutkowski, K., Metzen, E., Fandrey, J., and Jelkmann, W. (1999). Interleukin-1β and tumor necrosis factor-α stimulate DNA binding of hypoxia-inducible factor-1. Blood94, 1561–1567. Search in Google Scholar

Hewitson, K.S., McNeill, L.A., Riordan, M.V., Tian, Y.M., Bullock, A.N., Welford, R.W., Elkins, J.M., Oldham, N.J., Bhattacharya, S., Gleadle, J.M., et al. (2002). Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem.277, 26351–26355. Search in Google Scholar

Hirota, K. and Semenza, G.L. (2001). Rac1 activity is required for the activation of hypoxia-inducible factor 1. J. Biol. Chem.276, 21166–21172. Search in Google Scholar

Hirsila, M., Koivunen, P., Gunzler, V., Kivirikko, K.I., and Myllyharju, J. (2003). Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J. Biol. Chem.278, 30772–30780. Search in Google Scholar

Hirsila, M., Koivunen, P., Xu, L., Seeley, T., Kivirikko, K.I., and Myllyharju, J. (2005). Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J.19, 1308–1310. Search in Google Scholar

Ho, V.T. and Bunn, H.F. (1996). Effects of transition metals on the expression of the erythropoietin gene: further evidence that the oxygen sensor is a heme protein. Biochem. Biophys. Res. Commun.223, 175–180. Search in Google Scholar

Hon, W.C., Wilson, M.I., Harlos, K., Claridge, T.D., Schofield, C.J., Pugh, C.W., Maxwell, P.H., Ratcliffe, P.J., Stuart, D.I., and Jones, E.Y. (2002). Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature417, 975–978. Search in Google Scholar

Hu, C.J., Iyer, S., Sataur, A., Covello, K.L., Chodosh, L.A., and Simon, M.C. (2006). Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1α) and HIF-2α in stem cells. Mol. Cell. Biol.26, 3514–3526. Search in Google Scholar

Hu, C.J., Wang, L.Y., Chodosh, L.A., Keith, B., and Simon, M.C. (2003). Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol. Cell. Biol.23, 9361–9374. Search in Google Scholar

Irani, K., Xia, Y., Zweier, J.L., Sollott, S.J., Der, C.J., Fearon, E.R., Sundaresan, M., Finkel, T., and Goldschmidt-Clermont, P.J. (1997). Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science275, 1649–1652. Search in Google Scholar

Ivan, M., Haberberger, T., Gervasi, D.C., Michelson, K.S., Gunzler, V., Kondo, K., Yang, H., Sorokina, I., Conaway, R.C., Conaway, J.W., and Kaelin, W.G. Jr. (2002). Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl. Acad. Sci. USA99, 13459–13464. Search in Google Scholar

Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G. Jr. (2001). HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science292, 464–468. Search in Google Scholar

Jaakkola, P., Mole, R.D., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Von Kriegsheim, A., Hebenstreit, H.F., Mukherji, M., Schofiels, C.J., et al. (2001). Targeting of HIF-a to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science292, 468–472. Search in Google Scholar

Jiang, B.H., Jiang, G., Zheng, J.Z., Lu, Z., Hunter, T., and Vogt, P.K. (2001). Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ.12, 363–369. Search in Google Scholar

Kaelin, W., Maher, E., Richard, S., and Maxwell, P.H. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Cancer Res.59, 2251–2253. Search in Google Scholar

Kietzmann, T., Jungermann, K., and Gorlach, A. (2003a). Regulation of the hypoxia-dependent plasminogen activator inhibitor 1 expression by MAP kinases. Thromb. Haemost.89, 666–673. Search in Google Scholar

Kietzmann, T., Samoylenko, A., Roth, U., and Jungermann, K. (2003b). Hypoxia-inducible factor-1 and hypoxia response elements mediate the induction of plasminogen activator inhibitor-1 gene expression by insulin in primary rat hepatocytes. Blood101, 907–914. Search in Google Scholar

Kim, W. and Kaelin, W.G. Jr. (2003). The von Hippel-Lindau tumor suppressor protein: new insights into oxygen sensing and cancer. Curr. Opin. Genet. Dev.13, 55–60. Search in Google Scholar

Knowles, H.J., Mole, D.R., Ratcliffe, P.J., and Harris, A.L. (2006). Normoxic stabilization of hypoxia-inducible factor-1α by modulation of the labile iron pool in differentiating U937 macrophages: effect of natural resistance-associated macrophage protein 1. Cancer Res.66, 2600–2607. Search in Google Scholar

Knowles, H.J., Raval, R.R., Harris, A.L., and Ratcliffe, P.J. (2003). Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res.63, 1764–1768. Search in Google Scholar

Kohl, R., Zhou, J., and Brune, B. (2006). Reactive oxygen species attenuate nitric-oxide-mediated hypoxia-inducible factor-1α stabilization. Free Radic. Biol. Med.40, 1430–1442. Search in Google Scholar

Kozhukhar, A.V., Yasinska, I.M., and Sumbayev, V.V. (2006). Nitric oxide inhibits HIF-1α protein accumulation under hypoxic conditions: implication of 2-oxoglutarate and iron. Biochimie88, 411–418. Search in Google Scholar

Lambeth, J.D. (2004). NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol.4, 181–189. Search in Google Scholar

Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L., and Bruick, R.K. (2002a). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev.16, 1466–1471. Search in Google Scholar

Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J., and Whitelaw, M.L. (2002b). Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science295, 858–861. Search in Google Scholar

Larcher, F., Robles, A.I., Duran, H., Murillas, R., Quintanilla, M., Cano, A., Conti, C.J., and Jorcano, J.L. (1996). Up-regulation of vascular endothelial growth factor/vascular permeability factor in mouse skin carcinogenesis correlates with malignant progression state and activated H-ras expression levels. Cancer Res.56, 5391–5396. Search in Google Scholar

Laughner, E., Taghavi, P., Chiles, K., Mahon, P.C., and Semenza, G.L. (2001). HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α (HIF-1α) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell. Biol.21, 3995–4004. Search in Google Scholar

Lee, K.S., Kim, S.R., Park, S.J., Park, H.S., Min, K.H., Lee, M.H., Jin, S.M., Jin, G.Y., Yoo, W.H., and Lee, Y.C. (2006). Hydrogen peroxide induces vascular permeability via regulation of vascular endothelial growth factor. Am. J. Respir. Cell Mol. Biol.35, 190–197. Search in Google Scholar

Li, Q., Chen, H., Huang, X., and Costa, M. (2006). Effects of 12 metal ions on iron regulatory protein 1 (IRP-1) and hypoxia-inducible factor-1α (HIF-1α) and HIF-regulated genes. Toxicol. Appl. Pharmacol.213, 245–255. Search in Google Scholar

Lu, H., Dalgard, C.L., Mohyeldin, A., McFate, T., Tait, A.S., and Verma, A. (2005). Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J. Biol. Chem.280, 41928–41939. Search in Google Scholar

Mahon, P.C., Hirota, K., and Semenza, G.L. (2001). FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev.15, 2675–2686. Search in Google Scholar

Makino, Y., Cao, R., Svensson, K., Bertilsson, G., Asman, M., Tanaka, H., Cao, Y., Berkenstam, A., and Poellinger, L. (2001). Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature414, 550–554. Search in Google Scholar

Makino, Y., Kanopka, A., Wilson, W.J., Tanaka, H., and Poellinger, L. (2002). Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3α locus. J. Biol. Chem.277, 32405–32408. Search in Google Scholar

Mansfield, K.D., Guzy, R.D., Pan, Y., Young, R.M., Cash, T.P., Schumacker, P.T., and Simon, M.C. (2005). Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell Metab.1, 393–399. Search in Google Scholar

Maranchie, J.K. and Zhan, Y. (2005). Nox4 is critical for hypoxia-inducible factor 2-α transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma. Cancer Res.65, 9190–9193. Search in Google Scholar

Marxsen, J.H., Stengel, P., Doege, K., Heikkinen, P., Jokilehto, T., Wagner, T., Jelkmann, W., Jaakkola, P., and Metzen, E. (2004). Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-α-prolyl-4-hydroxylases. Biochem. J.381, 761–767. Search in Google Scholar

Maxwell, P.H. (2005). The HIF pathway in cancer. Semin. Cell Dev. Biol.16, 523–530. Search in Google Scholar

Maxwell, P.H., Dachs, G.U., Gleadle, J.M., Nicholls, L.G., Harris, A.L., Stratford, I.J., Hankinson, O., Pugh, C.W., and Ratcliffe, P.J. (1997). Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl. Acad. Sci. USA94, 8104–8109. Search in Google Scholar

Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399, 271–275. Search in Google Scholar

Mayer, A., Wree, A., Hockel, M., Leo, C., Pilch, H., and Vaupel, P. (2004). Lack of correlation between expression of HIF-1α protein and oxygenation status in identical tissue areas of squamous cell carcinomas of the uterine cervix. Cancer Res.64, 5876–5881. Search in Google Scholar

Mazure, N.M., Chen, E.Y., Yeh, P., Laderoute, K.R., and Giaccia, A.J. (1996). Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res.56, 3436–3440. Search in Google Scholar

McNeill, L.A., Hewitson, K.S., Claridge, T.D., Seibel, J.F., Horsfall, L.E., and Schofield, C.J. (2002). Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the β-carbon of asparagine-803. Biochem. J.367, 571–575. Search in Google Scholar

Melillo, G., Taylor, L.S., Brooks, A., Musso, T., Cox, G.W., and Varesio, L. (1997). Functional requirement of the hypoxia-responsive element in the activation of the inducible nitric oxide synthase promoter by the iron chelator desferrioxamine. J. Biol. Chem.272, 12236–12243. Search in Google Scholar

Metzen, E., Berchner-Pfannschmidt, U., Stengel, P., Marxsen, J.H., Stolze, I., Klinger, M., Huang, W.Q., Wotzlaw, C., Hellwig-Burgel, T., Jelkmann, W., et al. (2003). Intracellular localisation of human HIF-1α hydroxylases: implications for oxygen sensing. J. Cell Sci.116, 1319–1326. Search in Google Scholar

Metzen, E., Stiehl, D.P., Doege, K., Marxsen, J.H., Hellwig-Burgel, T., and Jelkmann, W. (2005). Regulation of the prolyl hydroxylase domain protein 2 (phd2/egln-1) gene: identification of a functional hypoxia-responsive element. Biochem. J.387, 711–717. Search in Google Scholar

Min, J.-H., Yang, H., Ivan, M., Gertler, F., Kaelin, W.G., and Pavletich, N.P. (2002). Structure of HIF1a-pVHL complex: hydroxyproline recognition in signaling. Science296, 1886–1889. Search in Google Scholar

Moeller, B.J., Cao, Y., Li, C.Y., and Dewhirst, M.W. (2004). Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell5, 429–441. Search in Google Scholar

Muller, F.L., Liu, Y., and Van Remmen, H. (2004). Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem.279, 49064–49073. Search in Google Scholar

Ohh, M. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Oncologist5 (Suppl. 1), 32–36. Search in Google Scholar

Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L., and Denko, N.C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab.3, 187–197. Search in Google Scholar

Park, J.H., Kim, T.Y., Jong, H.S., Chun, Y.S., Park, J.W., Lee, C.T., Jung, H.C., Kim, N.K., and Bang, Y.J. (2003). Gastric epithelial reactive oxygen species prevent normoxic degradation of hypoxia-inducible factor-1α in gastric cancer cells. Clin. Cancer Res.9, 433–440. Search in Google Scholar

Pescador, N., Cuevas, Y., Naranjo, S., Alcaide, M., Villar, D., Landazuri, M.O., and Del Peso, L. (2005). Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem. J.390, 189–197. Search in Google Scholar

Pollard, P.J., Briere, J.J., Alam, N.A., Barwell, J., Barclay, E., Wortham, N.C., Hunt, T., Mitchell, M., Olpin, S., Moat, S.J., et al. (2005). Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet.14, 2231–2239. Search in Google Scholar

Postovit, L.M., Sullivan, R., Adams, M.A., and Graham, C.H. (2005). Nitric oxide signalling and cellular adaptations to changes in oxygenation. Toxicology208, 235–248. Search in Google Scholar

Pouyssegur, J., Dayan, F., and Mazure, N.M. (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature441, 437–443. Search in Google Scholar

Pugh, C.W. and Ratcliffe, P.J. (2003a). Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med.9, 677–684. Search in Google Scholar

Pugh, C.W. and Ratcliffe, P.J. (2003b). The von Hippel-Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Semin. Cancer Biol.13, 83–89. Search in Google Scholar

Qian, D., Lin, H.Y., Wang, H.M., Zhang, X., Liu, D.L., Li, Q.L., and Zhu, C. (2004). Normoxic induction of the hypoxic-inducible factor-1α by interleukin-1β involves the extracellular signal-regulated kinase 1/2 pathway in normal human cytotrophoblast cells. Biol. Reprod.70, 1822–1827. Search in Google Scholar

Quintero, M., Brennan, P.A., Thomas, G.J., and Moncada, S. (2006). Nitric oxide is a factor in the stabilization of hypoxia-inducible factor-1α in cancer: role of free radical formation. Cancer Res.66, 770–774. Search in Google Scholar

Rak, J., Mitsuhashi, Y., Bayko, L., Filmus, J., Shirasawa, S., Sasazuki, T., and Kerbel, R.S. (1995). Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res.55, 4575–4580. Search in Google Scholar

Richard, D.E., Berra, E., and Pouyssegur, J. (2000). Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1α in vascular smooth muscle cells. J. Biol. Chem.275, 26765–26771. Search in Google Scholar

Rodriguez, J.A., Nespereira, B., Perez-Ilzarbe, M., Eguinoa, E., and Paramo, J.A. (2005). Vitamins C and E prevent endothelial VEGF and VEGFR-2 overexpression induced by porcine hypercholesterolemic LDL. Cardiovasc. Res.65, 665–673. Search in Google Scholar

Roth, U., Curth, K., Unterman, T.G., and Kietzmann, T. (2004). The transcription factors HIF-1 and HNF-4 and the coactivator p300 are involved in insulin-regulated glucokinase gene expression via the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem.279, 2623–2631. Search in Google Scholar

Sanchez-Lopez, E., Lopez, A.F., Esteban, V., Yague, S., Egido, J., Ruiz-Ortega, M., and Alvarez-Arroyo, M.V. (2005). Angiotensin II regulates vascular endothelial growth factor via hypoxia-inducible factor-1α induction and redox mechanisms in the kidney. Antioxid. Redox Signal.7, 1275–1284. Search in Google Scholar

Sanjuan-Pla, A., Cervera, A.M., Apostolova, N., Garcia-Bou, R., Victor, V.M., Murphy, M.P., and McCreath, K.J. (2005). A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1α. FEBS Lett.579, 2669–2674. Search in Google Scholar

Schofield, C.J. and Ratcliffe, P.J. (2004). Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol.5, 343–354. Search in Google Scholar

Schofield, C.J. and Zhang, Z. (1999). Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr. Opin. Struct. Biol.9, 722–731. Search in Google Scholar

Schroedl, C., McClintock, D.S., Budinger, G.R., and Chandel, N.S. (2002). Hypoxic but not anoxic stabilization of HIF-1α requires mitochondrial reactive oxygen species. Am. J. Physiol. Lung Cell Mol. Physiol.283, L922–L931. Search in Google Scholar

Selak, M.A., Armour, S.M., MacKenzie, E.D., Boulahbel, H., Watson, D.G., Mansfield, K.D., Pan, Y., Simon, M.C., Thompson, C.B., and Gottlieb, E. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell7, 77–85. Search in Google Scholar

Selak, M.A., Duran, R.V., and Gottlieb, E. (2006). Redox stress is not essential for the pseudo-hypoxic phenotype of succinate dehydrogenase deficient cells. Biochim. Biophys. Acta1757, 567–572. Search in Google Scholar

Semenza, G.L. (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell Dev. Biol.15, 551–578. Search in Google Scholar

Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer3, 721–732. Search in Google Scholar

Semenza, G.L., Roth, P.H., Fang, H.M., and Wang, G.L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem.269, 23757–23763. Search in Google Scholar

Shatrov, V.A., Sumbayev, V.V., Zhou, J., and Brune, B. (2003). Oxidized low-density lipoprotein (oxLDL) triggers hypoxia-inducible factor-1α (HIF-1α) accumulation via redox-dependent mechanisms. Blood101, 4847–4849. Search in Google Scholar

Shi, Y.H., Wang, Y.X., Bingle, L., Gong, L.H., Heng, W.J., Li, Y., and Fang, W.G. (2005). In vitro study of HIF-1 activation and VEGF release by bFGF in the T47D breast cancer cell line under normoxic conditions: involvement of PI-3K/Akt and MEK1/ERK pathways. J. Pathol.205, 530–536. Search in Google Scholar

Sodhi, A., Montaner, S., Miyazaki, H., and Gutkind, J.S. (2001). MAPK and Akt act cooperatively but independently on hypoxia inducible factor-1α in rasV12 upregulation of VEGF. Biochem. Biophys. Res. Commun.287, 292–300. Search in Google Scholar

Sowter, H.M., Raval, R.R., Moore, J.W., Ratcliffe, P.J., and Harris, A.L. (2003). Predominant role of hypoxia-inducible transcription factor (Hif)-1α versus Hif-2α in regulation of the transcriptional response to hypoxia. Cancer Res.63, 6130–6134. Search in Google Scholar

Srinivas, V., Leshchinsky, I., Sang, N., King, M.P., Minchenko, A., and Caro, J. (2001). Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. J. Biol. Chem.276, 21995–21998. Search in Google Scholar

Stiehl, D.P., Jelkmann, W., Wenger, R.H., and Hellwig-Burgel, T. (2002). Normoxic induction of the hypoxia-inducible factor 1α by insulin and interleukin-1β involves the phosphatidylinositol 3-kinase pathway. FEBS Lett.512, 157–162. Search in Google Scholar

Stiehl, D.P., Wirthner, R., Koditz, J., Spielmann, P., Camenisch, G., and Wenger, R.H. (2006). Increased prolyl-4-hydroxylase domain (PHD) proteins compensate for decreased oxygen levels: evidence for an autoregulatory oxygen-sensing system. J. Biol. Chem.281, 23482–23491. Search in Google Scholar

Tacchini, L., Dansi, P., Matteucci, E., and Desiderio, M.A. (2001). Hepatocyte growth factor signalling stimulates hypoxia inducible factor-1 (HIF-1) activity in HepG2 hepatoma cells. Carcinogenesis22, 1363–1371. Search in Google Scholar

Taylor, M.S. (2001). Characterization and comparative analysis of the EGLN gene family. Gene275, 125–132. Search in Google Scholar

Thomas, D.D., Ridnour, L.A., Espey, M.G., Donzelli, S., Ambs, S., Hussain, S.P., Harris, C.C., Degraff, W., Roberts, D.D., Mitchell, J.B., and Wink, D.A. (2006). Superoxide fluxes limit nitric oxide-induced signaling. J. Biol. Chem., Epub ahead of print, doi: 10.1074/jbc.M602242200. Search in Google Scholar

Tian, H., McKnight, S.L., and Russell, D.W. (1997). Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev.11, 72–82. Search in Google Scholar

Treins, C., Giorgetti-Peraldi, S., Murdaca, J., Semenza, G.L., and Van Obberghen, E. (2002). Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J. Biol. Chem.277, 27975–27981. Search in Google Scholar

Vaupel, P. (2004). The role of hypoxia-induced factors in tumor progression. Oncologist9 (Suppl. 5), 10–17. Search in Google Scholar

Vaux, E.C., Metzen, E., Yeates, K.M., and Ratcliffe, P.J. (2001). Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood98, 296–302. Search in Google Scholar

Verma, A. (2006). Oxygen-sensing in tumors. Curr. Opin. Clin. Nutr. Metab. Care9, 366–378. Search in Google Scholar

Wang, D., Na, X., Schoen, S.R., Messing, E.M., Wu, G., and Hon, W.C. (2002). Structural basis for the recognition of hydroxyproline in HIF-1 α by pVHL. Biochem. Biophys. Res. Commun.294, 700–709. Search in Google Scholar

Wang, G.L., Jiang, B.H., and Semenza, G.L. (1995). Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun.216, 669–675. Search in Google Scholar

Wang, G.L. and Semenza, G.L. (1993). Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood82, 3610–3615. Search in Google Scholar

Wenger, R.H. (2002). Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J.16, 1151–1162. Search in Google Scholar

Wenger, R.H., Stiehl, D.P., and Camenisch, G. (2005). Integration of oxygen signaling at the consensus HRE. Sci. STKE 2005, 306: re12. Search in Google Scholar

White, F.C., Benehacene, A., Scheele, J.S., and Kamps, M. (1997). VEGF mRNA is stabilized by ras and tyrosine kinase oncogenes, as well as by UV radiation-evidence for divergent stabilization pathways. Growth Factors14, 199–212. Search in Google Scholar

Wiesener, M.S., Turley, H., Allen, W.E., Willam, C., Eckardt, K.U., Talks, K.L., Wood, S.M., Gatter, K.C., Harris, A.L., Pugh, C.W., et al. (1998). Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1α. Blood92, 2260–2268. Search in Google Scholar

Yu, F., White, S.B., Zhao, Q., and Lee, F.S. (2001). HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl. Acad. Sci. USA98, 9630–9635. Search in Google Scholar

Zelzer, E., Levy, Y., Kahana, C., Shilo, B.Z., Rubinstein, M., and Cohen, B. (1998). Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1α/ARNT. EMBO J.17, 5085–5094. Search in Google Scholar

Zhou, J., Fandrey, J., Schumann, J., Tiegs, G., and Brune, B. (2003). NO and TNF-α released from activated macrophages stabilize HIF-1α in resting tubular LLC-PK1 cells. Am. J. Physiol. Cell Physiol.284, C439–C446. Search in Google Scholar

Zhou, J., Schmid, T., and Brune, B. (2004). HIF-1α and p53 as targets of NO in affecting cell proliferation, death and adaptation. Curr. Mol. Med.4, 741–751. Search in Google Scholar

Zhu, X.Y., Rodriguez-Porcel, M., Bentley, M.D., Chade, A.R., Sica, V., Napoli, C., Caplice, N., Ritman, E.L., Lerman, A., and Lerman, L.O. (2004). Antioxidant intervention attenuates myocardial neovascularization in hypercholesterolemia. Circulation109, 2109–2115. Search in Google Scholar

Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., Gottschalk, A.R., Ryan, H.E., Johnson, R.S., Jefferson, A.B., et al. (2000). Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev.14, 391–396. Search in Google Scholar

Published Online: 2006-11-02
Published in Print: 2006-10-01

©2006 by Walter de Gruyter Berlin New York