Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 22, 2005

“Coelionomics”: towards understanding the molecular pathology of coeliac disease

Begoña Diosdado, Erica van Oort and Cisca Wijmenga


Coeliac disease (CD) is an inflammatory disorder of the small intestine characterised by a permanent intolerance to gluten-derived peptides. When gluten-derived peptides reach the lamina propria in CD patients, they provoke specific changes in the mucosa of their small intestine. Although the susceptibility to CD is strongly determined by environmental gluten, it is clearly a common genetic disorder. Important genetic factors for CD are the HLA-DQ genes located in the MHC region on chromosome 6 [ HLA-DQ2 (95%) or HLA-DQ8 (∼5%) heterodimers]. So far, the only treatment for CD consists of a life-long gluten-free diet. A key question in CD is why the gluten-derived peptides are resistant to further breakdown by endogenous proteases and how, in turn, they can activate a harmful immune response in the lamina propria of genetically predisposed individuals. Four mechanisms, namely apoptosis, oxidative stress, matrix metalloproteinases and dysregulation of proliferation and differentiation, are thought to play a role in the pathophysiology of CD. Whether the genes involved in these four mechanisms play a causative role in the development of the villous atrophy or are, in fact, a consequence of the disease process is unknown. In this review we summarise these mechanisms and discuss their validity in the context of current insights derived from genetic, genomic and molecular studies. We also discuss future directions for research and the therapeutic implications for patients.

Corresponding author: Prof. Cisca Wijmenga, Complex Genetics Section, Department of Biomedical Genetics, Stratenum 2.117, University Medical Centre Utrecht, P.O. Box 85060 AT, 3508 AB Utrecht, The Netherlands Phone: +31-30 253 8427, Fax: +31-30 253 8479,


1. Marsh MN. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterology 1992; 102: 330–54. Search in Google Scholar

2. Book L, Zone JJ, Neuhausen SL. Prevalence of celiac disease among relatives of sib pairs with celiac disease in US families. Am J Gastroenterol 2003; 98: 377–81. 10.1111/j.1572-0241.2003.07238.xSearch in Google Scholar

3. Carnicer J, Farre C, Varea V, Vilar P, Moreno J, Artigas J. Prevalence of coeliac disease in Down's syndrome. Eur J Gastroenterol Hepatol 2001; 13: 263–7. 10.1097/00042737-200103000-00008Search in Google Scholar

4. Bonamico M, Pasquino AM, Mariani P, Danesi HM, Culasso F, Mazzanti L, et al. Prevalence and clinical picture of celiac disease in Turner syndrome. J Clin Endocrinol Metab 2002; 87: 5495–8. 10.1210/jc.2002-020855Search in Google Scholar

5. Sategna Guidetti C, Solerio E, Scaglione N, Aimo G, Mengozzi G. Duration of gluten exposure in adult coeliac disease does not correlate with the risk for autoimmune disorders. Gut 2001; 49: 502–5. 10.1136/gut.49.4.502Search in Google Scholar

6. Collin P, Kaukinen K, Valimaki M, Salmi J. Endocrinological disorders and celiac disease. Endocr Rev 2002; 23: 464–83. 10.1210/er.2001-0035Search in Google Scholar

7. Greco L, Romino R, Coto I, Di Cosmo N, Percopo S, Maglio M, et al. The first large population based twin study of coeliac disease. Gut 2002; 50: 624–8. 10.1136/gut.50.5.624Search in Google Scholar

8. Schuppan D. Current concepts of celiac disease pathogenesis. Gastroenterology 2000; 119: 234–42. 10.1053/gast.2000.8521Search in Google Scholar

9. Maiuri L, Picarelli A, Boirivant M, Coletta S, Mazzilli MC, De Vincenzi M, et al. Definition of the initial immunologic modifications upon in vitro gliadin challenge in the small intestine of celiac patients. Gastroenterology 1996; 110: 1368–78. 10.1053/gast.1996.v110.pm8613040Search in Google Scholar

10. Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Auricchio S, et al. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 2003; 362: 30–7. 10.1016/S0140-6736(03)13803-2Search in Google Scholar

11. Godkin A, Jewell D. The pathogenesis of celiac disease. Gastroenterology 1998; 115: 206–10. 10.1016/S0016-5085(98)70382-8Search in Google Scholar

12. Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 2004; 21: 357–66. 10.1016/j.immuni.2004.06.020Search in Google Scholar

13. Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 2004; 21: 367–77. 10.1016/j.immuni.2004.06.018Search in Google Scholar

14. Ciccocioppo R, Di Sabatino A, Parroni R, D'Alo S, Pistoia MA, Doglioni C, et al. Cytolytic mechanisms of intraepithelial lymphocytes in coeliac disease (CoD). Clin Exp Immunol 2000; 120: 235–40. 10.1046/j.1365-2249.2000.01200.xSearch in Google Scholar

15. Maiuri L, Ciacci C, Raia V, Vacca L, Ricciardelli I, Raimondi F, et al. FAS engagement drives apoptosis of enterocytes of coeliac patients. Gut 2001; 48: 418–24. 10.1136/gut.48.3.418Search in Google Scholar

16. Di Sabatino A, Ciccocioppo R, D'Alo S, Parroni R, Millimaggi D, Cifone MG, et al. Intraepithelial and lamina propria lymphocytes show distinct patterns of apoptosis whereas both populations are active in Fas based cytotoxicity in coeliac disease. Gut 2001; 49: 380–6. 10.1136/gut.49.3.380Search in Google Scholar

17. Ehrmann J Jr, Kolek A, Kod'ousek R, Zapletalova J, Lisova S, Murray PG, et al. Immunohistochemical study of the apoptotic mechanisms in the intestinal mucosa during children's coeliac disease. Virchows Arch 2003; 442: 453–61. 10.1007/s00428-003-0794-2Search in Google Scholar

18. Giovannini C, Matarrese P, Scazzocchio B, Vari R, D'Archivio M, Straface E, et al. Wheat gliadin induces apoptosis of intestinal cells via an autocrine mechanism involving Fas-Fas ligand pathway. FEBS Lett 2003; 540: 117–24. 10.1016/S0014-5793(03)00236-9Search in Google Scholar

19. Dolfini E, Elli L, Dasdia T, Bufardeci B, Colleoni MP, Costa B, et al. In vitro cytotoxic effect of bread wheat gliadin on the LoVo human adenocarcinoma cell line. Toxicol In Vitro 2002; 16: 331–7. 10.1016/S0887-2333(02)00017-6Search in Google Scholar

20. Weiser MM, Douglas AP. An alternative mechanism for gluten toxicity in coeliac disease. Lancet 1976; 1: 567–9. Search in Google Scholar

21. Rocca E, Paganuzzi Stammati A, Zampaglioni F, Zucco F. Effects of gliadin-derived peptides from bread and durum wheats on in vitro cultures of human cell lines. Implications for coeliac disease pathogenesis. Toxicol Lett 1983; 16: 331–8. 10.1016/0378-4274(83)90195-9Search in Google Scholar

22. Hudson DA, Cornell HJ, Purdham DR, Rolles CJ. Non-specific cytotoxicity of wheat gliadin components towards cultured human cells. Lancet 1976; 1: 339–41. 10.1016/S0140-6736(76)90089-1Search in Google Scholar

23. Clemente MG, De Virgiliis S, Kang JS, Macatagney R, Musu MP, Di Pierro MR, et al. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut 2003; 52: 218–23. 10.1136/gut.52.2.218Search in Google Scholar

24. Sjolander A, Magnusson KE. Effects of wheat germ agglutinin on the cellular content of filamentous actin in intestine 407 cells. Eur J Cell Biol 1988; 47: 32–5. Search in Google Scholar

25. Glenney JR Jr, Glenney P. Comparison of Ca ++-regulated events in the intestinal brush border. J Cell Biol 1985; 100: 754–63. 10.1083/jcb.100.3.754Search in Google Scholar

26. Dolfini E, Elli L, Ferrero S, Braidotti P, Roncoroni L, Dasdia T, et al. Bread wheat gliadin cytotoxicity: a new three-dimensional cell model. Scand J Clin Lab Invest 2003; 63: 135–41. 10.1080/00365510310000088Search in Google Scholar

27. Walker-Smith J. Revised criteria for diagnosis of coeliac disease. Report of Working Group of European Society of Paediatric Gastroenterology and Nutrition. Arch Dis Child 1990; 65: 909–11. 10.1136/adc.65.8.909Search in Google Scholar

28. Rivabene R, Mancini E, De Vincenzi M. In vitro cytotoxic effect of wheat gliadin-derived peptides on the Caco-2 intestinal cell line is associated with intracellular oxidative imbalance: implications for coeliac disease. Biochim Biophys Acta 1999; 1453: 152–60. 10.1016/S0925-4439(98)00095-7Search in Google Scholar

29. Elli L, Dolfini E, Bardella MT. Gliadin cytotoxicity and in vitro cell cultures. Toxicol Lett 2003; 146: 1–8. 10.1016/j.toxlet.2003.09.004Search in Google Scholar

30. Stahlberg MR, Hietanen E, Maki M. Mucosal biotransformation rates in the small intestine of children. Gut 1988; 29: 1058–63. 10.1136/gut.29.8.1058Search in Google Scholar

31. Odetti P, Valentini S, Aragno I, Garibaldi S, Pronzato MA, Rolandi E, et al. Oxidative stress in subjects affected by celiac disease. Free Radic Res 1998; 29: 17–24. 10.1080/10715769800300031Search in Google Scholar

32. Lavy A, Ben Amotz A, Aviram M. Increased susceptibility to undergo lipid peroxidation of chylomicrons and low-density lipoprotein in celiac disease. Ann Nutr Metab 1993; 37: 68–74. 10.1159/000177752Search in Google Scholar

33. van Straaten EA, Koster-Kamphuis L, Bovee-Oudenhoven IM, van der Meer R, Forget PP. Increased urinary nitric oxide oxidation products in children with active coeliac disease. Acta Paediatr 1999; 88: 528–31. 10.1111/j.1651-2227.1999.tb00169.xSearch in Google Scholar

34. Maiuri MC, De Stefano D, Mele G, Iovine B, Bevilacqua MA, Greco L, et al. Gliadin increases iNOS gene expression in interferon-gamma-stimulated RAW 264.7 cells through a mechanism involving NF-kappa B. Naunyn Schmiedebergs Arch Pharmacol 2003; 368: 63–71. 10.1007/s00210-003-0771-ySearch in Google Scholar

35. Liu RH, Hotchkiss JH. Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat Res 1995; 339: 73–89. 10.1016/0165-1110(95)90004-7Search in Google Scholar

36. Murray IA, Daniels I, Coupland K, Smith JA, Long RG. Increased activity and expression of iNOS in human duodenal enterocytes from patients with celiac disease. Am J Physiol Gastrointest Liver Physiol 2002; 283: G319–26. 10.1152/ajpgi.00324.2001Search in Google Scholar

37. Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004; 4: 617–29. 10.1038/nri1418Search in Google Scholar

38. Daum S, Bauer U, Foss HD, Schuppan D, Stein H, Riecken EO, et al. Increased expression of mRNA for matrix metalloproteinases-1 and -3 and tissue inhibitor of metalloproteinases-1 in intestinal biopsy specimens from patients with coeliac disease. Gut 1999; 44: 17–25. 10.1136/gut.44.1.17Search in Google Scholar

39. Salmela MT, MacDonald TT, Black D, Irvine B, Zhuma T, Saarialho-Kere U, et al. Upregulation of matrix metalloproteinases in a model of T cell mediated tissue injury in the gut: analysis by gene array and in situ hybridisation. Gut 2002; 51: 540–7. 10.1136/gut.51.4.540Search in Google Scholar

40. Pender SL, Fell JM, Chamow SM, Ashkenazi A, MacDonald TT. A p55 TNF receptor immunoadhesin prevents T cell-mediated intestinal injury by inhibiting matrix metalloproteinase production. J Immunol 1998; 160: 4098–103. Search in Google Scholar

41. Pender SL, Tickle SP, Docherty AJ, Howie D, Wathen NC, MacDonald TT. A major role for matrix metalloproteinases in T cell injury in the gut. J Immunol 1997; 158: 1582–90. Search in Google Scholar

42. Salmela MT, Pender SL, Reunala T, MacDonald T, Saarialho-Kere U. Parallel expression of macrophage metalloelastase (MMP-12) in duodenal and skin lesions of patients with dermatitis herpetiformis. Gut 2001; 48: 496–502. 10.1136/gut.48.4.496Search in Google Scholar

43. Ye S. Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol 2000; 19: 623–9. 10.1016/S0945-053X(00)00102-5Search in Google Scholar

44. Louka AS, Stensby EK, Ek J, Gudjonsdottir AH, Ascher H, Sollid LM. Coeliac disease candidate genes: no association with functional polymorphisms in matrix metalloproteinase 1 and 3 gene promoters. Scand J Gastroenterol 2002; 37: 931–5. 10.1080/003655202760230892Search in Google Scholar

45. Wright NA, Morley AR, Appleton DR, Marks JM, Douglas AP, Watson AJ. Measurement of cell production rate in the human small bowel. Pathol Microbiol (Basel) 1973; 39: 251–3. 10.1159/000162655Search in Google Scholar

46. Wright N, Watson A, Morley A, Appleton D, Marks J, Douglas A. The cell cycle time in the flat (avillous) mucosa of the human small intestine. Gut 1973; 14: 603–6. 10.1136/gut.14.8.603Search in Google Scholar

47. Wright N, Watson A, Morley A, Appleton D, Marks J. Cell kinetics in flat (avillous) mucosa of the human small intestine. Gut 1973; 14: 701–10. 10.1136/gut.14.9.701Search in Google Scholar

48. Savidge TC, Walker-Smith JA, Phillips AD. Intestinal proliferation in coeliac disease: looking into the crypt. Gut 1995; 36: 321–3. 10.1136/gut.36.3.321Search in Google Scholar

49. Diosdado B, Wapenaar MC, Franke L, Duran KJ, Goerres MJ, Hadithi M, et al. A microarray screen for novel candidate genes in coeliac disease pathogenesis. Gut 2004; 53: 944–51. 10.1136/gut.2003.018374Search in Google Scholar

50. Wice BM, Gordon JI. A tetraspan membrane glycoprotein produced in the human intestinal epithelium and liver that can regulate cell density-dependent proliferation. J Biol Chem 1995; 270: 21907–18. 10.1074/jbc.270.37.21907Search in Google Scholar

51. Salvati VM, Bajaj-Elliott M, Poulsom R, Mazzarella G, Lundin KE, Nilsen EM, et al. Keratinocyte growth factor and coeliac disease. Gut 2001; 49: 176–81. 10.1136/gut.49.2.176Search in Google Scholar

52. Bach SP, Renehan AG, Potten CS. Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis 2000; 21: 469–76. 10.1093/carcin/21.3.469Search in Google Scholar

53. Lionetti P, Pazzaglia A, Moriondo M, Azzari C, Resti M, Amorosi A, et al. Differing patterns of transforming growth factor-beta expression in normal intestinal mucosa and in active celiac disease. J Pediatr Gastroenterol Nutr 1999; 29: 308–13. 10.1097/00005176-199909000-00013Search in Google Scholar

54. Yamamoto K, Fujiyama Y, Andoh A, Bamba T, Okabe H. Oxidative stress increases MICA and MICB gene expression in the human colon carcinoma cell line (CaCo-2). Biochim Biophys Acta 2001; 1526: 10–2. 10.1016/S0304-4165(01)00099-XSearch in Google Scholar

55. Hojilla CV, Mohammed FF, Khokha R. Matrix metallo-proteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 2003; 89: 1817–21. 10.1038/sj.bjc.6601327Search in Google Scholar

56. Babron MC, Nilsson S, Adamovic S, Naluai AT, Wahlstrom J, Ascher H, et al. Meta and pooled analysis of European coeliac disease data. Eur J Hum Genet 2003; 11: 828–34. 10.1038/sj.ejhg.5201051Search in Google Scholar

57. Holopainen P, Mustalahti K, Uimari P, Collin P, Maki M, Partanen J. Candidate gene regions and genetic heterogeneity in gluten sensitivity. Gut 2001; 48: 696–701. 10.1136/gut.48.5.696Search in Google Scholar

58. Naluai AT, Nilsson S, Gudjonsdottir AH, Louka AS, Ascher H, Ek J, et al. Genome-wide linkage analysis of Scandinavian affected sib-pairs supports presence of susceptibility loci for celiac disease on chromosomes 5 and 11. Eur J Hum Genet 2001; 9: 938–44. 10.1038/sj.ejhg.5200752Search in Google Scholar

59. Liu J, Juo SH, Holopainen P, Terwilliger J, Tong X, Grunn A, et al. Genomewide linkage analysis of celiac disease in Finnish families. Am J Hum Genet 2002; 70: 51–9. 10.1086/338453Search in Google Scholar

60. Rioux JD, Karinen H, Kocher K, McMahon SG, Karkkainen P, Janatuinen E, et al. Genomewide search and association studies in a Finnish celiac disease population: identification of a novel locus and replication of the HLA and CTLA4 loci. Am J Med Genet 2004; 130A: 345–50. 10.1002/ajmg.a.30072Search in Google Scholar

61. Greco L, Corazza G, Babron MC, Clot F, Fulchignoni-Lataud MC, Percopo S, et al. Genome search in celiac disease. Am J Hum Genet 1998; 62: 669–75. 10.1086/301754Search in Google Scholar

62. Greco L, Babron MC, Corazza GR, Percopo S, Sica R, Clot F, et al. Existence of a genetic risk factor on chromosome 5q in Italian coeliac disease families. Ann Hum Genet 2001; 65: 35–41. 10.1046/j.1469-1809.2001.6510035.xSearch in Google Scholar

63. Zhong F, McCombs CC, Olson JM, Elston RC, Stevens FM, McCarthy CF, et al. An autosomal screen for genes that predispose to celiac disease in the western counties of Ireland. Nat Genet 1996; 14: 329–33. 10.1038/ng1196-329Search in Google Scholar

64. King AL, Yiannakou JY, Brett PM, Curtis D, Morris MA, Dearlove AM, et al. A genome-wide family-based linkage study of coeliac disease. Ann Hum Genet 2000; 64: 479–90. 10.1046/j.1469-1809.2000.6460479.xSearch in Google Scholar

65. Neuhausen SL, Feolo M, Camp NJ, Farnham J, Book L, Zone JJ. Genome-wide linkage analysis for celiac disease in North American families. Am J Med Genet 2002; 111: 1–9. 10.1002/ajmg.10527Search in Google Scholar

66. van Belzen MJ, Vrolijk MM, Meijer JW, Crusius JB, Pearson PL, Sandkuijl LA, et al. A genomewide screen in a four-generation Dutch family with celiac disease: evidence for linkage to chromosomes 6 and 9. Am J Gastroenterol 2004; 99: 466–71. 10.1111/j.1572-0241.2004.04072.xSearch in Google Scholar

67. Van Belzen MJ, Meijer JW, Sandkuijl LA, Bardoel AF, Mulder CJ, Pearson PL, et al. A major non-HLA locus in celiac disease maps to chromosome 19. Gastroenterology 2003; 125: 1032–41. 10.1016/S0016-5085(03)01205-8Search in Google Scholar

68. Woolley N, Holopainen P, Ollikainen V, Mustalahti K, Maki M, Kere J, et al. A new locus for coeliac disease mapped to chromosome 15 in a population isolate. Hum Genet 2002; 111: 40–5. 10.1007/s00439-002-0745-zSearch in Google Scholar

69. Cardon LR, Abecasis GR. Using haplotype blocks to map human complex trait loci. Trends Genet 2003; 19: 135–40. 10.1016/S0168-9525(03)00022-2Search in Google Scholar

70. The International HapMap Project. Nature 2003;426:789–96. 10.1038/nature02168Search in Google Scholar

71. Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, et al. Whole-genome patterns of common DNA variation in three human populations. Science 2005; 307: 1072–9. 10.1126/science.1105436Search in Google Scholar

72. Quackenbush J. Computational analysis of microarray data. Nat Rev Genet 2001; 2: 418–27. 10.1038/35076576Search in Google Scholar

73. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, et al. Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 2001; 29: 365–71. 10.1038/ng1201-365Search in Google Scholar

74. Parkinson H, Sarkans U, Shojatalab M, Abeygunawardena N, Contrino S, Coulson R, et al. ArrayExpress – a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 2005; 33: D553–5. 10.1093/nar/gki056Search in Google Scholar

75. Juuti-Uusitalo K, Maki M, Kaukinen K, Collin P, Visakorpi T, Vihinen M, et al. cDNA microarray analysis of gene expression in coeliac disease jejunal biopsy samples. J Autoimmun 2004; 22: 249–65. 10.1016/j.jaut.2003.12.001Search in Google Scholar

76. Diosdado B, Stepniak DT, Monsuur AJ, Franke L, Wapenaar MC, Mearin ML, et al. No genetic association of the human prolyl endopeptidase gene found in the Dutch celiac disease population. Am J Physiol Gastrointest Liver Physiol 2005 (doi:10.1152/ajpgi.00056.2005). In press. Search in Google Scholar

77. MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science 2000; 289: 1760–3. 10.1126/science.289.5485.1760Search in Google Scholar

78. Kwon Y, Han Z, Karatan E, Mrksich M, Kay BK. Anti-body arrays prepared by cutinase-mediated immobilization on self-assembled monolayers. Anal Chem 2004; 76: 5713–20. 10.1021/ac049731ySearch in Google Scholar

79. Bogdanov B, Smith RD. Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 2005; 24: 168–200. 10.1002/mas.20015Search in Google Scholar

80. Journet A, Ferro M. The potentials of MS-based subproteomic approaches in medical science: the case of lysosomes and breast cancer. Mass Spectrom Rev 2004; 23: 393–442. 10.1002/mas.20001Search in Google Scholar

81. Yeo S, Roh GS, Kim DH, Lee JM, Seo SW, Cho JW, et al. Quantitative profiling of plasma peptides in asthmatic mice using liquid chromatography and mass spectrometry. Proteomics 2004; 4: 3308–17. 10.1002/pmic.200400918Search in Google Scholar

82. Orru S, Caputo I, D'Amato A, Ruoppolo M, Esposito C. Proteomics identification of acyl-acceptor and acyl-donor substrates for transglutaminase in a human intestinal epithelial cell line. Implications for celiac disease. J Biol Chem 2003; 278: 31766–73. Search in Google Scholar

83. Ruoppolo M, Orru S, D'Amato A, Francese S, Rovero P, Marino G, et al. Analysis of transglutaminase protein substrates by functional proteomics. Protein Sci 2003; 12: 1290–7. 10.1110/ps.0239103Search in Google Scholar

84. Stulik J, Hernychova L, Porkertova S, Pozler O, Tuckova L, Sanchez D, et al. Identification of new celiac disease autoantigens using proteomic analysis. Proteomics 2003; 3: 951–6. 10.1002/pmic.200300370Search in Google Scholar

85. Vidal M. A biological atlas of functional maps. Cell 2001; 104: 333–9. 10.1016/S0092-8674(01)00221-5Search in Google Scholar

86. Ishii N, Robert M, Nakayama Y, Kanai A, Tomita M. Toward large-scale modeling of the microbial cell for computer simulation. J Biotechnol 2004; 113: 281–94. 10.1016/j.jbiotec.2004.04.038Search in Google Scholar

87. Franke L, van Bakel H, Diosdado B, van Belzen M, Wapenaar M, Wijmenga C. TEAM: a tool for the integration of expression, and linkage and association maps. Eur J Hum Genet 2004; 12: 633–8. 10.1038/sj.ejhg.5201215Search in Google Scholar

88. Roses AD. Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet 2004; 5: 645–56. 10.1038/nrg1432Search in Google Scholar

89. Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, et al. Structural basis for gluten intolerance in celiac sprue. Science 2002; 297: 2275–9. 10.1126/science.1074129Search in Google Scholar

90. Senger S, Luongo D, Maurano F, Mazzeo MF, Siciliano RA, Gianfrani C, et al. Intranasal administration of a recombinant alpha-gliadin down-regulates the immune response to wheat gliadin in DQ8 transgenic mice. Immunol Lett 2003; 88: 127–34. 10.1016/S0165-2478(03)00069-5Search in Google Scholar

91. Vader LW, Stepniak DT, Bunnik EM, Kooy YM, de Haan W, Drijfhout JW, et al. Characterization of cereal toxi-city for celiac disease patients based on protein homology in grains. Gastroenterology 2003; 125: 1105–13. 10.1016/S0016-5085(03)01204-6Search in Google Scholar

92. Wu J, Alizadeh BZ, Veen TV, Meijer JW, Mulder CJ, Pena AS. Association of FAS (TNFRSF6)-670 gene polymorphism with villous atrophy in coeliac disease. World J Gastroenterol 2004; 10: 717–20. 10.3748/wjg.v10.i5.717Search in Google Scholar

93. Lopez-Vazquez A, Rodrigo L, Fuentes D, Riestra S, Bousono C, Garcia-Fernandez S, et al. MHC class I chain related gene A (MICA) modulates the development of coeliac disease in patients with the high risk heterodimer DQA1*0501/DQB1*0201. Gut 2002; 50: 336–40. 10.1136/gut.50.3.336Search in Google Scholar

94. Rueda B, Pascual M, Lopez-Nevot MA, Koeleman BP, Ortega E, Maldonado J, et al. Association of MICA-A5.1 allele with susceptibility to celiac disease in a family study. Am J Gastroenterol 2003; 98: 359–62. 10.1111/j.1572-0241.2003.07228.xSearch in Google Scholar

95. Martin-Pagola A, Ortiz L, Perez de Nanclares G, Vitoria JC, Castano L, Bilbao JR. Analysis of the expression of MICA in small intestinal mucosa of patients with celiac disease. J Clin Immunol 2003; 23: 498–503. 10.1023/B:JOCI.0000010426.16956.ccSearch in Google Scholar

96. Maiuri L, Ciacci C, Auricchio S, Brown V, Quaratino S, Londei M. Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology 2000; 119: 996–1006. 10.1053/gast.2000.18149Search in Google Scholar

97. Mention JJ, Ben Ahmed M, Begue B, Barbe U, Verkarre V, Asnafi V, et al. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lympho-magenesis in celiac disease. Gastroenterology 2003; 125: 730–45. 10.1016/S0016-5085(03)01047-3Search in Google Scholar

98. Seegers D, Borm ME, van Belzen MJ, Mulder CJ, Bailing J, Crusius JB, et al. IL12B and IRF1 gene polymorphisms and susceptibility to celiac disease. Eur J Immunogenet 2003; 30: 421–5. 10.1111/j.1365-2370.2003.00428.xSearch in Google Scholar

99. Wapenaar MC, van Belzen MJ, Fransen JH, Sarasqueta AF, Houwen RH, Meijer JW, et al. The interferon gamma gene in celiac disease: augmented expression correlates with tissue damage but no evidence for genetic susceptibility. J Autoimmun 2004; 23: 183–90. 10.1016/j.jaut.2004.05.004Search in Google Scholar

100. Lahat N, Shapiro S, Karban A, Gerstein R, Kinarty A, Lerner A. Cytokine profile in coeliac disease. Scand J Immunol 1999; 49: 441–6. 10.1046/j.1365-3083.1999.00523.xSearch in Google Scholar

101. Monteleone I, Monteleone G, Del Vecchio Blanco G, Vavassori P, Cucchiara S, MacDonald TT, et al. Regulation of the T helper cell type 1 transcription factor T-bet in coeliac disease mucosa. Gut 2004; 53: 1090–5. 10.1136/gut.2003.030551Search in Google Scholar

102. McManus R, Moloney M, Borton M, Finch A, Chuan YT, Lawlor E, et al. Association of celiac disease with microsatellite polymorphisms close to the tumor necrosis factor genes. Hum Immunol 1996; 45: 24–31. 10.1016/0198-8859(95)00144-1Search in Google Scholar

103. van Belzen MJ, Mulder CJ, Pearson PL, Houwen RH, Wijmenga C. The tissue transglutaminase gene is not a primary factor predisposing to celiac disease. Am J Gastroenterol 2001; 96: 3337–40. 10.1016/S0002-9270(01)03897-7Search in Google Scholar

104. Esposito C, Paparo F, Caputo I, Porta R, Salvati VM, Mazzarella G, et al. Expression and enzymatic activity of small intestinal tissue transglutaminase in celiac disease. Am J Gastroenterol 2003; 98: 1813–20. 10.1111/j.1572-0241.2003.07582.xSearch in Google Scholar

Received: 2005-1-13
Accepted: 2005-5-19
Published Online: 2005-8-22
Published in Print: 2005-7-1

©2005 by Walter de Gruyter Berlin New York