Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 1, 2007

Hyperhomocysteinemia and high-density lipoprotein metabolism in cardiovascular disease

Dan Liao, Xiaofeng Yang and Hong Wang
From the journal

Abstract

Hyperhomocysteinemia (HHcy) is a significant and independent risk factor for cardiovascular disease (CVD) and the underlying mechanism is unclear. We and others have reported that homocysteine (Hcy) is inversely correlated with plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein AI (apoA-I) in patients with coronary heart disease (CHD). We confirmed this negative correlation in mice with targeted deletions of the genes for apolipoprotein E (apoE) and cystathionine β-synthase (CBS). Severe HHcy (plasma Hcy 210 μmol/L) accelerates spontaneous arthrosclerosis in the CBS−/−/apoE−/− mice, reduces the concentration of circulating HDL, apoA-I, and large HDL particles, inhibits HDL function, and enhances HDL-C clearance. We have demonstrated further that Hcy (0.5–2 mmol/L) reduces apoA-I protein synthesis and secretion, but not RNA transcription in mouse primary hepatocytes. A different mechanism was proposed based on studies using the HepG2 cells showing that Hcy (5–10 mmol/L) inhibits apoA-I transcription via peroxisome proliferator-activated receptor-α (PPARα)-inhibition-dependent and -independent mechanisms. These studies suggest that Hcy-induced HDL-C and apoA-I inhibition represent a novel mechanism by which Hcy induces atherosclerotic CVD.

Clin Chem Lab Med 2007;45:1652–9.


Corresponding author: Hong Wang, Department of Pharmacology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA Phone: +1-215-707-5986, Fax: +1-215-707-7068,

Received: 2007-9-4
Accepted: 2007-10-2
Published Online: 2007-12-01
Published in Print: 2007-12-01

©2007 by Walter de Gruyter Berlin New York

Scroll Up Arrow