Accessible Unlicensed Requires Authentication Published by De Gruyter December 10, 2009

Artificial intelligence for diagnostic purposes: principles, procedures and limitations

Ton J. Cleophas and Toine F. Cleophas


Background: Back propagation (BP) artificial neural networks are a distribution-free method for data analysis based on layers of artificial neurons that transduce imputed information. It has been recognized as having a number of advantages compared to traditional methods including the possibility to process imperfect data, and complex non-linear data. The objective of this study was to review the principles, procedures, and limitations of BP artificial neural networks for a non-mathematical readership.

Methods: A real data sample of weight, height and measured body surface area from 90 individuals was used as an example. SPSS 17.0 with neural network add-on was used for the analysis. The predicted body surface from a two hidden layer BP neural network was compared to the body surface calculated by the Haycock equation.

Results: Both the predicted values from the neural network and from the Haycock equation were close to the measured values. A linear regression analysis with neural network as predictor produced an r2-value of 0.983, while the Haycock equation produced an r2-value of 0.995 (r2>0.95 is a criterion for accurate diagnostic testing).

Conclusions: BP neural networks may, sometimes, predict clinical diagnoses with accuracies similar to those of other methods. However, traditional statistical procedures, such as regression analyses need to be added for testing their accuracies against alternative methods. Nonetheless, BP neural networks have great potential through their ability to learn by example instead of learning by theory.

Clin Chem Lab Med 2010;48:159–65.

Corresponding author: Professor Ton J. Cleophas, c/o Department of Medicine, Albert Schweitzer Hospital, Box 444, 3300 AK Dordrecht, The Netherlands

Received: 2009-9-24
Accepted: 2009-10-6
Published Online: 2009-12-10
Published in Print: 2010-02-01

©2010 by Walter de Gruyter Berlin New York