Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 31, 2009

Geodesic flow of the averaged controlled Kepler equation

Bernard Bonnard and Jean-Baptiste Caillau
From the journal

Abstract

A normal form of the Riemannian metric arising when averaging the coplanar controlled Kepler equation is given. This metric is parameterized by two scalar invariants which encode its main properties. The restriction of the metric to S2 is shown to be conformal to the flat metric on an oblate ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation of the standard astroid. Though not complete because of a singularity at the origin in the space of ellipses, the metric has convexity properties that are expressed in terms of the aforementioned invariants, and related to surjectivity of the exponential mapping. Optimality properties of geodesics of the averaged controlled Kepler system are finally obtained thanks to the computation of the cut locus of the restriction to the sphere.

Received: 2007-03-12
Published Online: 2009-08-31
Published in Print: 2009-September

© de Gruyter 2009

Downloaded on 26.11.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/FORUM.2009.038/html
Scroll Up Arrow