Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 31, 2009

Alternators in the Cayley-Dickson algebras

Aaron Pixton
From the journal

Abstract

The Cayley-Dickson algebras An are an infinite sequence of (non-associative) algebras beginning with the well-known composition algebras ℝ, ℂ, ℍ, 𝕆. We completely describe all possible dimensions for the alternator Alt(a) ≔ {bAn | a(ab) = (aa)b = 0} of an element aAn, for n ≥ 7. This resolves a conjecture of Biss, Christensen, Dugger, and Isaksen. On the way to obtaining this result, we establish numerous results on the eigentheory of left multiplication operators in An, some of which may be of independent interest.

Received: 2007-11-13
Revised: 2008-02-14
Published Online: 2009-08-31
Published in Print: 2009-September

© de Gruyter 2009

Scroll Up Arrow