Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 15, 2010

ℋ-matrix approximation for elliptic solution operators in cylinder domains

  • I. P. Gavrilyuk , W. Hackbusch and B. N. Khoromskij
From the journal


We develop a data-sparse and accurate approximation of the normalised hyperbolic operator sine family generated by a strongly P-positive elliptic operator defined in [Gavrilyuk, J. Math. Anal. Appl. 236: 327–349, 1999, Gavrilyuk and Makarov, Numer. Funct. Anal. Optimization 20: 695–717, 1999].

In the preceding papers [Hackbusch, Computing 62: 89–108, 1999–Hackbusch, Khoromskij, and Sauter, On ℋ2-matrices, Springer-Verlag, 2000], a class of ℋ-matrices has been analysed which is data-sparse and allow an approximate matrix arithmetic with almost linear complexity. An ℋ-matrix approximation to the operator exponent with a strongly P-positive operator was proposed in [Gavrilyuk, Hackbusch, and Khoromskij, ℋ-matrix approximation for the operator exponential with applications, 2000]. In the present paper, we apply the ℋ-matrix techniques to approximate the elliptic solution operator on cylinder-like domains Ω × [a, b] associated with the elliptic operator , x ∈ [a, b]. It is explicitly presented by the normalised hyperbolic sine of an elliptic operator ℒ defined in Ω. The approach is then applied to elliptic partial differential equations in domains composed of rectangles or cylinders. In particular, we consider the ℋ-matrix approximation to the interface Poincaré-Steklov operators with application in the Schur-complement domain decomposition method.

Starting with the Dunford–Cauchy representation for the hyperbolic sine operator, we then discretise the integral by the exponentially convergent quadrature rule involving a short sum of resolvents. The latter are approximated by the ℋ-matrix techniques. Our algorithm inherits a two-level parallelism with respect to both the computation of resolvents and the treatment of different values of the spatial variable x ∈ [a, b].

Received: 2000-12-22
Published Online: 2010-11-15
Published in Print: 2001-March

© VSP 2001

Downloaded on 28.5.2023 from
Scroll to top button