Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 30, 2021

Methodology for integral analysis of ATWS for Kuosheng nuclear power station

Integrale Analyse eines ATWS Szenarios für das Kernkraftwerk Kuosheng
H.-C. Chien, K.-H. Jsu, A.-S. Lin, H.-T. Lin and C. T. Lin
From the journal Kerntechnik

Abstract

An integral analysis methodology for BWR ATWS has been developed. The method covers main scopes about ATWS events, including radiological consequence, primary system integrity, fuel integrity, containment integrity, and long-term shutdown and cooling capability. The primary techniques about this methodology were described herein. The methodology has been applied on Kuosheng nuclear power station to show the applicability. Under this framework, some suggestions were proposed for further development of this methodology. This methodology can give a way to evaluate safety of BWR plants confidently. Further, it can be a tool for developing emergency procedures about severe accidents, or exploring strategies and checking their effectiveness.

Abstract

Es wurde eine integrale Analysemethodik zur Berechnung eines ATWS Ereignisses in einem Siedewasserreaktor entwickelt. Die Methode deckt die Hauptbereiche von ATWS-Ereignissen ab, einschließlich der radiologischen Folgen, der primären Systemintegrität, der Brennstoffintegrität, der Containmentintegrität und der langfristigen Abschalt- und Kühlfähigkeit. Die wesentlichen Techniken dieser Methodik werden in diesem Beitrag zusammengefasst.

Die Anwendbarkeit dieser Methodik wird durch die Beschreibung der Berechnung für ein ATWS am Kernkraftwerk Kuosheng gezeigt. In diesem Rahmen werden einige Vorschläge für die weitere Entwicklung dieser Methodik gemacht. Diese Methodik kann als Werkzeug zur zuverlässigen Bewertung der Sicherheit von SWR-Anlagen dienen. Außerdem kann sie bei der Entwicklung von Notfallprozeduren für schwere Unfälle oder der Erforschung von Strategien und deren Überprüfung eingesetzt werden.

Nomenclature

AOO

anticipated operation occurrence

ARI

alternate rod injection

ATWS

anticipated transient without scram

BOC

beginning of cycle

BWR

boiling water reactor

CHF

critical heat flux

CPR

critical power ratio

DBA

design basis accident

DR

decay ratio

EAB

exclusion area boundary

ECPR

experimental critical power ratio

EOC

end of cycle

GE

general electric company

INER

institute of nuclear energy research

LPPF

local power peaking factor

LPZ

low population zone

MOC

middle of cycle

MSIVC

main steam isolation valve closure

MUR

measurement uncertainty recapture

NSSS

Nuclear Steam Supply System

OCPR

operating critical power ratio

PBTT

peach bottom turbine trip

PCT

peak cladding temperature

Pdf

probability density function

PREGO

pressure regulator failure open

RCPB

reactor coolant pressure boundary

RCIC

rector core isolation cooling

RHR

residual heat removal

RPS

reactor protection system

RPT

recirculating pump trip

RPV

reactor pressure vessel

RRCS

redundant reactivity control system

SGTS

standby gas treatment system

SLCS

standby liquid control system

SLMCPR

safety limit minimum critical power ratio

SPU

stretch power uprate

TPC

Taiwan power company

TT

turbine trip

TTWB

turbine trip with bypass

References

1 Technical Report on Anticipated Transient Without Scram for Water-Cooled Power Reactors. WASH-1270, 1973Search in Google Scholar

2 U. S. Nuclear Regulation Commission: Anticipated Transient without Scram for Light Water Reactors, Volumes 1*3, NUREG-0460, April 1978Search in Google Scholar

3 ATWS Betterment Work in Kuosheng Nuclear Power Station. Taiwan Power Company Purchase Contract No. 91-TPC-NOSD-KSATWS-C, February 25, 1990Search in Google Scholar

4 Kuosheng Nuclear Power Station Performance of ATWS Mitigation System at Rated Power Operation and at Maximum Extended Operating Domain. GENE-770 –16 –0692, June 1992Search in Google Scholar

5 Kao L. S.; et al.: Anticipated Transient without Scram Performance Analysis for MUR Power Uprating of Kuosheng Plant. TPC/INER, TITRAM/KS-SPT-MHD-01 Revision 2, May 2006Search in Google Scholar

6 Yuann Y. R., et al.: Anticipated Transient without Scram Performance Analysis for Stretch Power Uprate of Kuosheng Plant. TPC/ INER, KSSPU-EE-REP002-R0, July 2011Search in Google Scholar

7 Chien, H.-C.; et al.: The ATWS integral analysis methodology for Kuosheng nuclear power station. (in Chinese), INER-K0094R, December 2019Search in Google Scholar

8 Final Safety Analysis Report of the Kuosheng Nuclear Power Station Unit 1&2. Taiwan Power Company, Amendment 22, November 2016Search in Google Scholar

9 Kuosheng Emergency Operating Procedure. (in Chinese), 500.4 EOP-RC Ver.6, March 2002Search in Google Scholar

10 Paulsen M. P.; et al.: RETRAN3D–A Program for Transient Thermal-Hydraulic Analysis of Complex Fluid Flow Systems. EPRI, NP-7450(A), Revision 6.3, July 2007Search in Google Scholar

11 Tang, J.-R.; et al.: BWR Transient Analysis Methods for Kuosheng NPP with RETRAN-3D. TPC/INER, TITRAM/KS-STH-MOD-01 Revision 2, May 2006Search in Google Scholar

12 Tang, J.-R.; et al.: Analyses of Startup Test, Reload Limiting Transient, and Plant Event for the Kuosheng BWR-6 Related to MSIV Closure. Nuclear Technology 128 (1999) 186–204, , DOI:10.13182/NT99-A302410.13182/NT99-A3024Search in Google Scholar

13 SIMULATE-3 Advanced Three Dimensional Two Group Reactor Analysis Code. Studsvik/SOA-95/15-Rev 4 for Version 6.09.08Search in Google Scholar

14 Cronin, J. T.: SLICK: SIMULATE-3 Linking for Core Kinetics User’s Manual, STUDSVIK/SOA-95/20-REV 0Search in Google Scholar

15 Technical Specifications. Kuosheng Nuclear Power Station Units 1 & 2, Taiwan Power Company, Amendment 6, November 2016Search in Google Scholar

16 Sung, Y. X.; Schueren, P.; Meliksetian, A.: VIPRE-01 Modeling and Qualification for PressurizedWater Reactor Non- LOCAThermal-Hydraulic Safety Analysis. WCAP-14565-P-A,Westinghouse, October 1999Search in Google Scholar

17 Tang, J.-R.; et al.: Hot-Channel Analysis for Kuosheng BWR/6. INER, TITRAM/KS-CTH-MOD-01-A, June 2007Search in Google Scholar

18 Hsu, K.-H.; Chiu, Y.-K.: The Safety Limit Minimum Critical Power Ratio Evaluation Methodology for Chinshan and Kuosheng Nuclear Power Plants. (in Chinese), TITRAM/CS/KS-THT-MHD-05, March 2011Search in Google Scholar

19 Groeneveld D. C.; et al.: The 1995 look-up table for critical heat flux in tubes. Nuclear Engineering and Design 163 (1996) 1–23, DOI:10.1016/0029-5493(95)01154-410.1016/0029-5493(95)01154-4Search in Google Scholar

20 Tomiyama A.; Yokomizo, O.; Yoshimoto, Y.; Sugawara, S.: Method of Critical Power Prediction Based on Film Flow Model Coupled with Subchannel Analysis. Journal of Nuclear Science and Technology 25 (1988) 914–928,10.1080/18811248.1988.9735949Search in Google Scholar

21 Navidi, W.: Statistics for Engineers and Scientists, 3rd Ed., McGraw Hill, 2011Search in Google Scholar

22 Rhodes, J.; Smith, K.: CASMO-4 A FUEL ASSEMBLY BURNUP PROGRAM User’s Manual. Studsvik SSP-01/400 Rev 5, June 2007Search in Google Scholar

23 Tsai, C. M.: Design Basis Accident Radiological Dose Analysis Methodology for Kuosheng Nuclear Power Plant. (in Chinese), INER, TITRAM/KS-RAD-MHD-02, August 2017Search in Google Scholar

24 Humphreys, S. L.; Heames, T. J.; Miller, L. A.; Monroe, D. K.: RAD-TRAD: A Simplified Model for Radionuclide Transport and Removal and Dose Estimation. NUREG/CR-6604, Sandia National Laboratories, 199710.2172/604405Search in Google Scholar

25 Croff, A. G.: ORIGEN2 – A Revised and Updated Version of the ORNL Isotope Generation and Depletion Code. ORNL-5621, Oak Ridge National Lab., TN (USA), July 198010.2172/5352089Search in Google Scholar

26 Bander, T. J.: PAVAN: An Atmospheric Dispersion Program for Evaluating Design Basis Accidental Releases of Radioactive Materials from Nuclear Power Stations. NUREG/CR-2858, November 198210.2172/6609044Search in Google Scholar

27 Ramsdell, J. V.; Simonen, C. D.; Smyth S. B.: Atmosphere Relative Concentrations in Building Wakes. NUREG/CR-6331, 199710.2172/481848Search in Google Scholar

28 Wang, J. R.; et al.: Instability Analysis Methodology for Kuosheng Nuclear Power Plant. (in Chinese), INER, TITRAM/KS-SPT-MHD-03 R1, May 2012Search in Google Scholar

29 Escrivá, A.; Munoz-Cobo, J. L.; San roman, J. M.; Darriba, M. A.; March-Leuba, J.: LAPUR 6.0 User’s Manual. Oak Ridge National Laboratory, NUREG/CR-6958, ORNL/TM-2007/233, 2008Search in Google Scholar

30 Escriva, A.; Munoz-Cobo, J. L.: PAPU Models, Correlations, and User’s Manual. Thermal Hydraulic and Nuclear Engineering Group, GTIN-02/001, March 2002Search in Google Scholar

31 GOTHIC Containment Analysis Package User Manual, Version 8.2a(QA), EPRI, Palo Alto, CA, 2016Search in Google Scholar

32 GE Nuclear Energy: Mitigation of BWR Core Thermal-Hydraulic Instabilities in ATWS. NEDO-32164 Revision 0, GE Nuclear Energy, December 1992Search in Google Scholar

Received: 2020-09-28
Published Online: 2021-03-30
Published in Print: 2021-04-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow