Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 30, 2021

Experimental investigation on pool boiling for downward facing heating with different concentrations of Al2O3 nanofluids

Experimentelle Untersuchung des Poolsiedens bei abwärts gerichteter Beheizung mit unterschiedlichen Konzentrationen von Al2O3-Nanofluiden
Z. Zhou, Y. Gao, H.-E. Hsieh, H. Miao and Z. Zhang
From the journal Kerntechnik

Abstract

An experimental study has been conducted to examine the effect of different concentrations of α-Al2O3 nanofluids on boiling heat transfer for downward facing heating. The experimental results indicated that the surface heat transfer was enhanced with the rise of the nanofluids concentration, due to the bubble generation rate and disturbance increased. For downward facing heating, bubbles were not able to escape since the bouncy force influenced, and the vapor film appeared earlier as the increase of bubble generation rate. However, the heat transfer coefficient remains at a relatively high value in the early stage of film boiling, which suppresses the deterioration of heat transfer, due to the influences of nanofluids. As the various concentrations of nanofluids increased from 0 g/L to 0.012 g/L, it was found that the enhancement of the CHF (critical heat flux) up to 20.5%. After the nanofluids boiling, the surface roughness decreased and the wettability became worse. From the experimental phenomena, under the influence of these two factors, the bubble activity was enhanced.

Abstract

Es wurde eine experimentelle Studie durchgeführt, um die Auswirkung verschiedener Konzentrationen von α-Al2O3-Nanofluiden auf den Wärmeübergang beim Sieden für eine nach unten gerichtete Beheizung zu untersuchen. Die experimentellen Ergebnisse zeigten, dass der Wärmeübergang an der Oberfläche mit dem Anstieg der Nanofluid-Konzentration verbessert wurde, da die Blasenbildungsrate und die Störung zunahmen. Bei der nach unten gerichteten Beheizung konnten die Blasen nicht entweichen, da die Aufstiegskraft beeinflusst wurde, und der Dampffilm trat auf bevor die Blasenbildungsrate anstieg. Der Wärmeübergangskoeffizient bleibt jedoch in der frühen Phase des Filmsiedens auf einem relativ hohen Wert, wodurch die Verschlechterung des Wärmeübergangs durch die Einflüsse der Nanofluide unterdrückt wird. Mit der Erhöhung der Konzentrationen der Nanofluide von 0 g/L auf 0,012 g/L zeigte sich eine Verbesserung des kritischen Wärmestroms von bis zu 20,5%. Nach dem Sieden der Nanofluide nahm die Rauheit der Oberfläche ab und die Benetzbarkeit wurde schlechter. Aus den experimentellen Phänomenen geht hervor, dass unter dem Einfluss dieser beiden Faktoren die Blasenaktivität erhöht wurde.

Acknowledgements

The authors appreciate the financial support from Development Foundation of College of Energy, Xiamen University (No. 2018NYFZ04).

References

1 Yang, J.; Cheung, F. B.:Ahydrodynamic CHF model for downward facing boiling on a coated vessel. International Journal of Heat and Fluid Flow 26 (2005) 474, DOI:10.1016/j.ijheatfluidflow.2004.09.00310.1016/j.ijheatfluidflow.2004.09.003Search in Google Scholar

2 Sehgal, B. R.; Theerthan, A.; et al.: Assessment of reactor vessel integrity (ARVI). Nuclear Engineering and Design 221 (2003) 23, DOI:10.1016/S0029-5493(02)00343-610.1016/S0029-5493(02)00343-6Search in Google Scholar

3 Rougé, S.: SULTAN test facility for large-scale vessel coolability in natural convection at low pressure. Nuclear Engineering and Design 169 (1997) 185, DOI:10.1016/S0029-5493(96)01277-010.1016/S0029-5493(96)01277-0Search in Google Scholar

4 Hsieh, H. E.; Chen, M. S.; et al.: Flow impinging effect of critical heat flux and nucleation boiling heat transfer on a downward facing heating surface. Kerntechnik 80 (2015) 124, DOI:10.3139/124.11046910.3139/124.110469Search in Google Scholar

5 Hsieh, H. E.; Ferng, Y. M., et al.: Experimental study on the CHF characteristics with different coolant injection conditions and degassing effects on a downward-facing plane. Annals of Nuclear Energy 76 (2015) 48, DOI:10.1016/j.anucene.2014.09.03310.1016/j.anucene.2014.09.033Search in Google Scholar

6 Wen, D.; Ding, Y.: Experimental investigation into the pool boiling heat transfer of aqueous based c-alumina nanofluids. Journal of Nanoparticle Research 7 (2005) 265, DOI:10.1007/s11051-005-3478-910.1007/s11051-005-3478-9Search in Google Scholar

7 Soltani, S.; Etemad, S. G.; Thibault, J.: Pool boiling heat transfer performance of Newtonian nanofluids. Heat and Mass Transfer 45 (2009) 1555–1560, DOI:10.1007/s00231-009-0530-910.1007/s00231-009-0530-9Search in Google Scholar

8 Kim, S. J.; McKrell, T.; Buongiorno, J.; Hu, L.-W.: Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure. Nuclear Engineering and Design 240 (2010) 1186, DOI:10.1016/j.nucengdes.2010.01.02010.1016/j.nucengdes.2010.01.020Search in Google Scholar

9 Kim, S. J.; McKrell, T.; Buongiorno, J.; Hu, L.-W.: Experimental study of flow critical heat flux in alumina-water, zinc-oxide-water, and diamond-water nanofluids. Journal of Heat Transfer 131 (2009) 043204, DOI:10.1115/1.307292410.1115/1.3072924Search in Google Scholar

10 Shahmoradi, Z.; Etesami, N.; Esfanahny M. N.: Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis. International Communications in Heat and Mass Transfer 47 (2013) 113, DOI:10.1016/j.icheatmasstransfer.2013.06.00610.1016/j.icheatmasstransfer.2013.06.006Search in Google Scholar

11 Das, S. K.; Putra, N.; Roetzel, W.: Pool boiling characteristics of nano-fluids. International Journal of Heat and Mass Transfer 46 (2003) 851, DOI:10.1016/S0017-9310(02)00348-410.1016/S0017-9310(02)00348-4Search in Google Scholar

12 Das, S. K.; Putra, N.; Roetzel, W.: Pool boiling of nano-fluids on horizontal narrow tubes. International Journal of Multiphase Flow 29 (2003) 1237, DOI:10.1016/S0301-9322(03)00105-810.1016/S0301-9322(03)00105-8Search in Google Scholar

13 You, S. M.; Kim, J. H.: Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Applied Physics Letters 83 (2003) 3374, DOI:10.1063/1.161920610.1063/1.1619206Search in Google Scholar

14 Kim, J. H.; Kim, K. H.: Pool Boiling Heat Transfer in Saturated Nanofluids. Proceedings of IMECE04. 2004 ASME International Mechanical Engineering Congress and Exposition, November 13–20, 2004, Anaheim, California USA, IMECE2004 –61108Search in Google Scholar

15 Wen, D.: Influence of nanoparticles on boiling heat transfer. Applied Thermal Engineering 41 (2012) 2, DOI:10.1016/j.applthermaleng.2011.08.03510.1016/j.applthermaleng.2011.08.035Search in Google Scholar

16 Lee, J. H.; Lee, T.; Jeong, Y. H.: The effect of pressure on the critical heat flux in water-based nanofluids containing Al2O3 and Fe3O4 nanoparticles. International Journal of Heat and Mass Transfer 61 (2013) 432, DOI:10.1016/j.ijheatmasstransfer.2013.02.01810.1016/j.ijheatmasstransfer.2013.02.018Search in Google Scholar

17 Duangthongsuk, W.; Yiamsawasd, T.; Dalkilic, A. S.; Wongwises, S.: Pool-Boiling Heat Transfer Characteristics of Al2O3-Water Nanofluids on a Horizontal Cylindrical Heating Surface. Current Nanoscience 9 (2013) 56, DOI:10.2174/157341371130901001110.2174/1573413711309010011Search in Google Scholar

18 Harish, G.; Emlin, V.; Sajith, V.: Effect of surface particle interactions during pool boiling of nanofluids. International Journal of Thermal Sciences 50 (2011) 2318, DOI:10.1016/j.ijthermalsci.2011.06.01910.1016/j.ijthermalsci.2011.06.019Search in Google Scholar

19 Ahn, H. S.; Kim, M. H.: The boiling phenomenon of alumina nanofluid near critical heat flux. International Journal of Heat and Mass Transfer 62 (2013) 718, DOI:10.1016/j.ijheatmasstransfer.2013.03.05410.1016/j.ijheatmasstransfer.2013.03.054Search in Google Scholar

20 Ham, J.; Kim, H.; Shin, Y.; Cho, H.: Experimental investigation of pool boiling characteristics in Al2O3 nanofluid according to surface roughness and concentration. International Journal of Thermal Sciences 114 (2017) 86, DOI:10.1016/j.ijthermalsci.2016.12.00910.1016/j.ijthermalsci.2016.12.009Search in Google Scholar

21 Shoghl, S. N.; Bahrami, M.; Jamialahmadi, M.: The boiling performance of ZnO, α-Al2O3 and MWCNTs/water nanofluids: An experimental study. Experimental Thermal and Fluid Science 80 (2017) 27, DOI:10.1016/j.expthermflusci.2016.07.02410.1016/j.expthermflusci.2016.07.024Search in Google Scholar

22 Manetti, L. L.; Stephen, M. T.; Beck, P. A.; Cardoso, E. M.: Evaluation of the heat transfer enhancement during pool boiling using low concentrations of Al2O3 -water based nanofluid. Experimental Thermal and Fluid Science 87 (2017) 191, DOI:10.1016/j.expthermflusci.2017.04.01810.1016/j.expthermflusci.2017.04.018Search in Google Scholar

23 Golubovic, M. N.; Madhawa Hettiarachchi, H. D.; Worek, W. M.; Minkowycz, W. J.: Nanofluids and critical heat flux, experimental and analytical study. Applied Thermal Engineering 29 (2009) 1281, DOI:10.1016/j.applthermaleng.2008.05.00510.1016/j.applthermaleng.2008.05.005Search in Google Scholar

24 Narayan, G. P.; Anoop, K. B., Das, S. K.: Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes. Journal of Applied Physics 102 (2007) 074317, DOI:10.1063/1.279473110.1063/1.2794731Search in Google Scholar

25 Prakash Narayan, G.; Anoop, K. B.; Sateesh, G.; Das, S. K.: Effect of surface orientation on pool boiling heat transfer of nanoparticle suspensions. International Journal of Multiphase Flow 34 (2008) 145, DOI:10.1016/j.ijmultiphaseflow.2007.08.00410.1016/j.ijmultiphaseflow.2007.08.004Search in Google Scholar

26 Ho, C. Y.; Chu, T. K.: Electrical resistivity and thermal conductivity of nine selected AISI stainless steels. CINDAS/TEPIAC publication,Washington, 1977Search in Google Scholar

27 ASME: Test Uncertainty. The American Society of Mechanical Engineers, USA, 2006Search in Google Scholar

Received: 2020-10-08
Published Online: 2021-03-30
Published in Print: 2021-04-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow