Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 18, 2011

Optical detection of brain function: simultaneous imaging of cerebral vascular response, tissue metabolism, and cellular activity in vivo

Congwu Du and Yingtian Pan
From the journal

Abstract

It is known that a remaining challenge for functional brain imaging is to distinguish the coupling and decoupling effects among neuronal activity, cerebral metabolism, and vascular hemodynamics, which highlights the need for new tools to enable simultaneous measures of these three properties in vivo. Here, we review current neuroimaging techniques and their prospects and potential limitations for tackling this challenge. We then report a novel dual-wavelength laser speckle imaging (DW-LSI) tool developed in our labs that enables simultaneous imaging of cerebral blood flow (CBF), cerebral blood volume, and tissue hemoglobin oxygenation, which allows us to monitor neurovascular and tissue metabolic activities at high spatiotemporal resolutions over a relatively large field of view. Moreover, we report digital frequency ramping Doppler optical coherence tomography (DFR-OCT) that allows for quantitative 3D imaging of the CBF network in vivo. In parallel, we review calcium imaging techniques to track neuronal activity, including intracellular calcium approach using Rhod2 fluorescence technique that we develop to detect neuronal activity in vivo. We report a new multimodality imaging platform that combines DW-LSI, DFR-OCT, and calcium fluorescence imaging for simultaneous detection of cortical hemodynamics, cerebral metabolism, and neuronal activities of the animal brain in vivo, as well as its integration with microprobes for imaging neuronal function in deep brain regions in vivo. Promising results of in vivo animal brain functional studies suggest the potential of this multimodality approach for future awake animal and behavioral studies.


Corresponding author

Received: 2011-10-24
Accepted: 2011-10-25
Published Online: 2011-11-18
Published in Print: 2011-12-01

©2011 by Walter de Gruyter Berlin Boston

Scroll Up Arrow