Abstract
This paper deals with the existence of multiple solutions for the quasilinear equation
which involves a general variable exponent elliptic operator
Funding statement: Vicenţiu D. Rădulescu and Dušan D. Repovš were supported by the Slovenian Research Agency, grants P1-0292, J1-8131, J1-7025, N1-0064, and N1-0083.
References
[1] E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal. 156 (2001), no. 2, 121–140. 10.1007/s002050100117Search in Google Scholar
[2]
C. O. Alves and S. Liu,
On superlinear
[3] S. Antontsev and S. Shmarev, Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions, Nonlinear Anal. 65 (2006), no. 4, 728–761. 10.1016/j.na.2005.09.035Search in Google Scholar
[4]
A. Azzollini, P. d’Avenia and A. Pomponio,
Quasilinear elliptic equations in
[5] P. Baroni, M. Colombo and G. Mingione, Nonautonomous functionals, borderline cases and related function classes, Algebra i Analiz 27 (2015), no. 3, 6–50. Search in Google Scholar
[6] M.-M. Boureanu and V. D. Rădulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal. 75 (2012), no. 12, 4471–4482. 10.1016/j.na.2011.09.033Search in Google Scholar
[7]
J. Chabrowski and Y. Fu,
Existence of solutions for
[8] K. C. Chang, Critical Point Theory and Applications (in Chinese), Shanghai Scientific and Technology Press, Shanghai, 1986. Search in Google Scholar
[9] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383–1406. 10.1137/050624522Search in Google Scholar
[10] N. Chorfi and V. D. Rădulescu, Standing wave solutions of a quasilinear degenerate Schrödinger equation with unbounded potential, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Paper No. 37. 10.14232/ejqtde.2016.1.37Search in Google Scholar
[11] P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013. Search in Google Scholar
[12] M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), no. 1, 219–273. 10.1007/s00205-015-0859-9Search in Google Scholar
[13] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), no. 2, 443–496. 10.1007/s00205-014-0785-2Search in Google Scholar
[14]
A. Coscia and G. Mingione,
Hölder continuity of the gradient of
[15]
L. Diening,
Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces
[16] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer, Heidelberg, 2011. 10.1007/978-3-642-18363-8Search in Google Scholar
[17] D. E. Edmunds and J. Rákosník, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), no. 3, 267–293. 10.4064/sm-143-3-267-293Search in Google Scholar
[18] A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl. 300 (2004), no. 1, 30–42. 10.1016/j.jmaa.2004.05.041Search in Google Scholar
[19]
X. Fan,
Global
[20]
X. Fan, J. Shen and D. Zhao,
Sobolev embedding theorems for spaces
[21]
X. Fan, Q. Zhang and D. Zhao,
Eigenvalues of
[22]
X. Fan and D. Zhao,
On the spaces
[23]
X.-L. Fan and Q.-H. Zhang,
Existence of solutions for
[24]
Y. Fu,
The principle of concentration compactness in
[25] Y. Fu and Y. Shan, On the removability of isolated singular points for elliptic equations involving variable exponent, Adv. Nonlinear Anal. 5 (2016), no. 2, 121–132. 10.1515/anona-2015-0055Search in Google Scholar
[26]
P. Harjulehto, P. Hästö and V. Latvala,
Harnack’s inequality for
[27] P. Harjulehto, P. Hästö, V. Latvala and O. Toivanen, Critical variable exponent functionals in image restoration, Appl. Math. Lett. 26 (2013), no. 1, 56–60. 10.1016/j.aml.2012.03.032Search in Google Scholar
[28] P. Harjulehto, P. Hästö, U. V. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal. 72 (2010), no. 12, 4551–4574. 10.1016/j.na.2010.02.033Search in Google Scholar
[29] P. Harjulehto, V. Latvala and O. Toivanen, A variant of the Geman–McClure model for image restoration, J. Math. Anal. Appl. 399 (2013), no. 2, 676–681. 10.1016/j.jmaa.2012.10.050Search in Google Scholar
[30]
H. Hudzik,
On density of
[31]
H. Hudzik,
On imbedding theorems of Orlicz–Sobolev space
[32] R. C. James, Reflexivity and the sup of linear functionals, Israel J. Math. 13 (1972), no. 3–4, 289–300. 10.1007/BF02762803Search in Google Scholar
[33] T. Kopaliani, Interpolation theorems for variable exponent Lebesgue spaces, J. Funct. Anal. 257 (2009), no. 11, 3541–3551. 10.1016/j.jfa.2009.06.009Search in Google Scholar
[34]
O. Kováčik and J. Rákosník,
On spaces
[35]
P. Marcellini,
Regularity and existence of solutions of elliptic equations with
[36] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 23 (1996), no. 1, 1–25. Search in Google Scholar
[37] M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929–2937. 10.1090/S0002-9939-07-08815-6Search in Google Scholar
[38] M. Mihăilescu and V. Rădulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2087–2111. 10.5802/aif.2407Search in Google Scholar
[39] M. Mihăilescu, V. Rădulescu and D. Repovš, On a non-homogeneous eigenvalue problem involving a potential: An Orlicz–Sobolev space setting, J. Math. Pures Appl. (9) 93 (2010), no. 2, 132–148. 10.1016/j.matpur.2009.06.004Search in Google Scholar
[40] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983. 10.1007/BFb0072210Search in Google Scholar
[41] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), no. 1, 200–211. 10.4064/sm-3-1-200-211Search in Google Scholar
[42] P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations 257 (2014), no. 5, 1529–1566. 10.1016/j.jde.2014.05.023Search in Google Scholar
[43] V. D. Rădulescu, Nonlinear elliptic equations with variable exponent: Old and new, Nonlinear Anal. 121 (2015), 336–369. 10.1016/j.na.2014.11.007Search in Google Scholar
[44] V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents, Monogr. Res. Notes Math., CRC Press, Boca Raton, 2015. 10.1201/b18601Search in Google Scholar
[45] D. Repovš, Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl. (Singap.) 13 (2015), no. 6, 645–661. 10.1142/S0219530514500420Search in Google Scholar
[46] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer, Berlin, 2000. 10.1007/BFb0104029Search in Google Scholar
[47]
S. G. Samko,
Density of
[48] X. Wang and J. Yao, Compact embeddings between variable exponent spaces with unbounded underlying domain, Nonlinear Anal. 70 (2009), no. 10, 3472–3482. 10.1016/j.na.2008.07.005Search in Google Scholar
[49]
X. Wang, J. Yao and D. Liu,
High energy solutions to
[50]
J. Yao,
Solutions for Neumann boundary value problems involving
[51]
J. Yao and X. Wang,
On an open problem involving the
[52]
L. Yin, J. Yao, Q. Zhang and C. Zhao,
Multiplicity of strong solutions for a class of elliptic problems without the Ambrosetti–Rabinowitz condition in
[53] L. Yin, J. Yao, Q. H. Zhang and C. S. Zhao, Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth, Discrete Contin. Dyn. Syst. 37 (2017), no. 4, 2207–2226. 10.3934/dcds.2017095Search in Google Scholar
[54]
N. Yoshida,
Picone identities for half-linear elliptic operators with
[55]
Q. Zhang,
A strong maximum principle for differential equations with nonstandard
[56] Q. H. Zhang and V. D. Rădulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl. (9), to appear. 10.1016/j.matpur.2018.06.015Search in Google Scholar
[57] J. F. Zhao, Structure Theory of Banach Spaces (in Chinese), Wuhan University, Wuhan, 1991. Search in Google Scholar
[58] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv. 29 (1987), no. 1, 33–36. 10.1070/IM1987v029n01ABEH000958Search in Google Scholar
[59] C. K. Zhong, X. L. Fan and W. Y. Chen, Introduction to Nonlinear Functional Analysis, Lanzhou University, Lanzhou, 1998. Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston