Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 13, 2021

The existence of minimizers for an isoperimetric problem with Wasserstein penalty term in unbounded domains

  • Qinglan Xia and Bohan Zhou ORCID logo EMAIL logo

Abstract

In this article, we consider the (double) minimization problem

min { P ( E ; Ω ) + λ W p ( E , F ) : E Ω , F R d , | E F | = 0 , | E | = | F | = 1 } ,

where λ 0 , p 1 , Ω is a (possibly unbounded) domain in R d , P ( E ; Ω ) denotes the relative perimeter of 𝐸 in Ω and W p denotes the 𝑝-Wasserstein distance. When Ω is unbounded and d 3 , it is an open problem proposed by Buttazzo, Carlier and Laborde in the paper On the Wasserstein distance between mutually singular measures. We prove the existence of minimizers to this problem when the dimension d 1 , 1 p + 2 d > 1 , Ω = R d and 𝜆 is sufficiently small.

MSC 2010: 49J45; 49Q20; 49Q05; 49J20
  1. Communicated by: Frank Duzaar

References

[1] F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. 4 (1976), no. 165, 1–199. 10.1090/memo/0165Search in Google Scholar

[2] L. Ambrosio, Lecture notes on optimal transport problems, Mathematical Aspects of Evolving Interfaces, Lecture Notes in Math. 1812, Springer, Berlin (2003), 1–52. 10.1007/978-3-540-39189-0_1Search in Google Scholar

[3] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), no. 4, 375–417. 10.1002/cpa.3160440402Search in Google Scholar

[4] G. Buttazzo, G. Carlier and M. Laborde, On the Wasserstein distance between mutually singular measures, Adv. Calc. Var. 13 (2020), no. 2, 141–154. 10.1515/acv-2017-0036Search in Google Scholar

[5] G. De Philippis, A. R. Mészáros, F. Santambrogio and B. Velichkov, BV estimates in optimal transportation and applications, Arch. Ration. Mech. Anal. 219 (2016), no. 2, 829–860. 10.1007/s00205-015-0909-3Search in Google Scholar

[6] S. Di Marino and F. Santambrogio, JKO estimates in linear and non-linear Fokker–Planck equations, and Keller–Segel: Lp and Sobolev bounds, preprint (2019), https://arxiv.org/abs/1911.10999. 10.4171/aihpc/36Search in Google Scholar

[7] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, 1992. Search in Google Scholar

[8] A. Figalli, N. Fusco, F. Maggi, V. Millot and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies, Comm. Math. Phys. 336 (2015), no. 1, 441–507. 10.1007/s00220-014-2244-1Search in Google Scholar

[9] A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math. 182 (2010), no. 1, 167–211. 10.1007/s00222-010-0261-zSearch in Google Scholar

[10] W. Gangbo and R. J. McCann, The geometry of optimal transportation, Acta Math. 177 (1996), no. 2, 113–161. 10.1007/BF02392620Search in Google Scholar

[11] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal. 29 (1998), no. 1, 1–17. 10.1137/S0036141096303359Search in Google Scholar

[12] H. Knüpfer and C. B. Muratov, On an isoperimetric problem with a competing nonlocal term I: The planar case, Comm. Pure Appl. Math. 66 (2013), no. 7, 1129–1162. 10.1002/cpa.21451Search in Google Scholar

[13] H. Knüpfer and C. B. Muratov, On an isoperimetric problem with a competing nonlocal term II: The general case, Comm. Pure Appl. Math. 67 (2014), no. 12, 1974–1994. 10.1002/cpa.21479Search in Google Scholar

[14] L. Lussardi, M. A. Peletier and M. Röger, Variational analysis of a mesoscale model for bilayer membranes, J. Fixed Point Theory Appl. 15 (2014), no. 1, 217–240. 10.1007/s11784-014-0180-5Search in Google Scholar

[15] F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems, Cambridge Stud. Adv. Math. 135, Cambridge University, Cambridge, 2012. 10.1017/CBO9781139108133Search in Google Scholar

[16] E. Milakis, On the regularity of optimal sets in mass transfer problems, Comm. Partial Differential Equations 31 (2006), no. 4–6, 817–826. 10.1080/03605300500481244Search in Google Scholar

[17] F. Morgan, What is a surface?, Amer. Math. Monthly 103 (1996), no. 5, 369–376. 10.1080/00029890.1996.12004755Search in Google Scholar

[18] M. A. Peletier and M. Röger, Partial localization, lipid bilayers, and the elastica functional, Arch. Ration. Mech. Anal. 193 (2009), no. 3, 475–537. 10.1007/s00205-008-0150-4Search in Google Scholar

[19] F. Santambrogio, Optimal Transport for Applied Mathematicians, Progr. Nonlinear Differential Equations Appl. 87, Birkhäuser/Springer, Cham, 2015. 10.1007/978-3-319-20828-2Search in Google Scholar

[20] F. Santambrogio, {Euclidean, metric, and Wasserstein} gradient flows: An overview, Bull. Math. Sci. 7 (2017), no. 1, 87–154. 10.1007/s13373-017-0101-1Search in Google Scholar

[21] F. Santambrogio, Crowd motion and evolution PDEs under density constraints, SMAI 2017—8e Biennale Française des Mathématiques Appliquées et Industrielles, ESAIM Proc. Surveys 64, EDP Sciences, Les Ulis (2018), 137–157. 10.1051/proc/201864137Search in Google Scholar

[22] C. Villani, Topics in Optimal Transportation, Grad. Stud. Math. 58, American Mathematical Society, Providence, 2003. 10.1090/gsm/058Search in Google Scholar

[23] C. Villani, Optimal Transport, Grundlehren Math. Wiss. 338, Springer, Berlin, 2009. 10.1007/978-3-540-71050-9Search in Google Scholar

[24] Q. Xia, Regularity of minimizers of quasi perimeters with a volume constraint, Interfaces Free Bound. 7 (2005), no. 3, 339–352. 10.4171/IFB/128Search in Google Scholar

Received: 2020-08-09
Revised: 2020-12-10
Accepted: 2021-02-18
Published Online: 2021-03-13
Published in Print: 2023-01-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.12.2023 from https://www.degruyter.com/document/doi/10.1515/acv-2020-0083/html
Scroll to top button