Abstract
We provide bounds for the sequence of eigenvalues
where
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 12071189
Award Identifier / Grant number: 12001252
Funding source: Natural Science Foundation of Jiangxi Province
Award Identifier / Grant number: 20202BAB201005
Award Identifier / Grant number: 20202ACBL201001
Funding statement: This work is supported by NNSF of China, Nos. 12071189, 12001252, by the Jiangxi Provincial Natural Science Foundation, Nos. 20202BAB201005, 20202ACBL201001.
A Appendix: definedness of
L
Δ
μ
z
(
x
)
Lemma A.1.
Let
Proof.
Since the function
If it holds, we have
We introduce the Laplacian of
There holds
By Green’s formula,
We have
and
since n is the unit outward normal vector either on
Finally, we obtain
The boundedness and the continuity of
References
[1] F. A. Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134–1167. Search in Google Scholar
[2] L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math. 62 (2009), no. 5, 597–638. 10.1002/cpa.20274Search in Google Scholar
[3] L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), no. 2, 425–461. 10.1007/s00222-007-0086-6Search in Google Scholar
[4] H. Chen, P. Felmer and A. Quaas, Large solutions to elliptic equations involving fractional Laplacian, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 6, 1199–1228. 10.1016/j.anihpc.2014.08.001Search in Google Scholar
[5] H. Chen and L. Véron, Initial trace of positive solutions to fractional diffusion equations with absorption, J. Funct. Anal. 276 (2019), no. 4, 1145–1200. 10.1016/j.jfa.2018.10.013Search in Google Scholar
[6] H. Chen and T. Weth, The Dirichlet problem for the logarithmic Laplacian, Comm. Partial Differential Equations 44 (2019), no. 11, 1100–1139. 10.1080/03605302.2019.1611851Search in Google Scholar
[7] H. Chen and A. Zeng, Universal inequality and upper bounds of eigenvalues for non-integer poly-Laplacian on a bounded domain, Calc. Var. Partial Differential Equations 56 (2017), no. 5, Paper No. 131. 10.1007/s00526-017-1220-ySearch in Google Scholar
[8] Q.-M. Cheng and G. Wei, A lower bound for eigenvalues of a clamped plate problem, Calc. Var. Partial Differential Equations 42 (2011), no. 3–4, 579–590. 10.1007/s00526-011-0399-6Search in Google Scholar
[9] Q.-M. Cheng and H. Yang, Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann. 337 (2007), no. 1, 159–175. 10.1007/s00208-006-0030-xSearch in Google Scholar
[10] E. Correa and A. de Pablo, Nonlocal operators of order near zero, J. Math. Anal. Appl. 461 (2018), no. 1, 837–867. 10.1016/j.jmaa.2017.12.011Search in Google Scholar
[11] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. 10.1016/j.bulsci.2011.12.004Search in Google Scholar
[12] M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal. 263 (2012), no. 8, 2205–2227. 10.1016/j.jfa.2012.06.018Search in Google Scholar
[13] M. M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half-space, Commun. Contemp. Math. 18 (2016), no. 1, Article ID 1550012. 10.1142/S0219199715500121Search in Google Scholar
[14] M. Felsinger, M. Kassmann and P. Voigt, The Dirichlet problem for nonlocal operators, Math. Z. 279 (2015), no. 3–4, 779–809. 10.1007/s00209-014-1394-3Search in Google Scholar
[15] R. L. Frank and L. Geisinger, Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain, Mathematical Results in Quantum Physics, World Scientific, Hackensack (2011), 138–147. 10.1142/9789814350365_0012Search in Google Scholar
[16] R. L. Frank, T. König and H. Tang, Classification of solutions of an equation related to a conformal log Sobolev inequality, Adv. Math. 375 (2020), Article ID 107395. 10.1016/j.aim.2020.107395Search in Google Scholar
[17] S. Goyal and K. Sreenadh, On the Fučik spectrum of non-local elliptic operators, NoDEA Nonlinear Differential Equations Appl. 21 (2014), no. 4, 567–588. 10.1007/s00030-013-0258-6Search in Google Scholar
[18] E. M. Harrell, II and S. Yıldırım Yolcu, Eigenvalue inequalities for Klein–Gordon operators, J. Funct. Anal. 256 (2009), no. 12, 3977–3995. 10.1016/j.jfa.2008.12.008Search in Google Scholar
[19] S. Jarohs, A. Saldaña and T. Weth, A new look at the fractional Poisson problem via the logarithmic Laplacian, J. Funct. Anal. 279 (2020), no. 11, Article ID 108732. 10.1016/j.jfa.2020.108732Search in Google Scholar
[20] S. Jarohs and T. Weth, Local compactness and nonvanishing for weakly singular nonlocal quadratic forms, Nonlinear Anal. 193 (2020), Article ID 111431. 10.1016/j.na.2019.01.021Search in Google Scholar
[21] M. Kassmann and A. Mimica, Intrinsic scaling properties for nonlocal operators, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 4, 983–1011. 10.4171/JEMS/686Search in Google Scholar
[22] P. Kröger, Estimates for sums of eigenvalues of the Laplacian, J. Funct. Anal. 126 (1994), no. 1, 217–227. 10.1006/jfan.1994.1146Search in Google Scholar
[23] A. Laptev, Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces, J. Funct. Anal. 151 (1997), no. 2, 531–545. 10.1006/jfan.1997.3155Search in Google Scholar
[24] A. Laptev and T. Weth, Spectral properties of the logarithmic Laplacian, Anal. Math. Phys. 11 (2021), no. 3, Paper No. 133. 10.1007/s13324-021-00527-ySearch in Google Scholar
[25] P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), no. 3, 309–318. 10.1007/BF01213210Search in Google Scholar
[26] E. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, Proc. Sym. Pure Math. 36 1980, 241–252. 10.1090/pspum/036/573436Search in Google Scholar
[27] R. Musina and A. I. Nazarov, On fractional Laplacians, Comm. Partial Differential Equations 39 (2014), no. 9, 1780–1790. 10.1080/03605302.2013.864304Search in Google Scholar
[28] G. Pólya, On the eigenvalues of vibrating membranes, Proc. Lond. Math. Soc. (3) 11 (1961), 419–433. 10.1112/plms/s3-11.1.419Search in Google Scholar
[29] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. (9) 101 (2014), no. 3, 275–302. 10.1016/j.matpur.2013.06.003Search in Google Scholar
[30] X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal. 213 (2014), no. 2, 587–628. 10.1007/s00205-014-0740-2Search in Google Scholar
[31] G. V. Rozenbljum, Distribution of the discrete spectrum of singular differential operators, Dokl. Akad. Nauk SSSR 202 (1972), 1012–1015. Search in Google Scholar
[32] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966. Search in Google Scholar
[33] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479. 10.1007/BF01456804Search in Google Scholar
[34] S. Yildirim Yolcu and T. Yolcu, Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain, Commun. Contemp. Math. 15 (2013), no. 3, Article ID 1250048. 10.1142/S0219199712500484Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston