Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 2, 2021

Gamma-convergence of Gaussian fractional perimeter

  • Alessandro Carbotti ORCID logo , Simone Cito ORCID logo , Domenico Angelo La Manna ORCID logo EMAIL logo and Diego Pallara ORCID logo

Abstract

We prove the Γ-convergence of the renormalised Gaussian fractional s-perimeter to the Gaussian perimeter as s 1 - . Our definition of fractional perimeter comes from that of the fractional powers of Ornstein–Uhlenbeck operator given via Bochner subordination formula. As a typical feature of the Gaussian setting, the constant appearing in front of the Γ-limit does not depend on the dimension.

MSC 2010: 35R11; 49Q20

Communicated by Gianni Dal Maso


Funding statement: Alessandro Carbotti was partially supported by the TALISMAN project Cod. ARS01-01116. Simone Cito was partially supported by the ACROSS project Cod. ARS01-00702. Domenico Angelo La Manna was supported by the Academy of Finland grant 314227. Diego Pallara is member of G.N.A.M.P.A. of the Italian Istituto Nazionale di Alta Matematica (INdAM) and was partially supported by the PRIN 2015 MIUR project 2015233N54.

References

[1] G. Alberti and G. Bellettini, A non-local anisotropic model for phase transitions: Asymptotic behaviour of rescaled energies, European J. Appl. Math. 9 (1998), no. 3, 261–284. 10.1017/S0956792598003453Search in Google Scholar

[2] L. Ambrosio, G. De Philippis and L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals, Manuscripta Math. 134 (2011), no. 3–4, 377–403. 10.1007/s00229-010-0399-4Search in Google Scholar

[3] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., The Clarendon, New York, 2000. Search in Google Scholar

[4] J. Berendsen and V. Pagliari, On the asymptotic behaviour of nonlocal perimeters, ESAIM Control Optim. Calc. Var. 25 (2019), Paper No. 48. 10.1051/cocv/2018038Search in Google Scholar

[5] C. Borell, The Brunn–Minkowski inequality in Gauss space, Invent. Math. 30 (1975), no. 2, 207–216. 10.1007/BF01425510Search in Google Scholar

[6] J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, Optimal Control and Partial Differential Equations, IOS, Amsterdam (2001), 439–455. Search in Google Scholar

[7] K. Brezis, How to recognize constant functions. A connection with Sobolev spaces, Uspekhi Mat. Nauk 57 (2002), no. 4(346), 59–74. 10.4213/rm533Search in Google Scholar

[8] L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 (2010), no. 9, 1111–1144. 10.1002/cpa.20331Search in Google Scholar

[9] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7–9, 1245–1260. 10.1080/03605300600987306Search in Google Scholar

[10] L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations 41 (2011), no. 1–2, 203–240. 10.1007/s00526-010-0359-6Search in Google Scholar

[11] A. Carbotti, S. Cito, D. A. La Manna and D. Pallara, A quantitative dimension free isoperimetric inequality for the gaussian fractional perimeter, preprint (2020), to appear. Search in Google Scholar

[12] A. Carbotti, S. Don, D. Pallara and A. Pinamonti, Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups, ESAIM Control Optim. Calc. Var. 27 (2021), Paper No. S11. 10.1051/cocv/2020055Search in Google Scholar

[13] E. A. Carlen and C. Kerce, On the cases of equality in Bobkov’s inequality and Gaussian rearrangement, Calc. Var. Partial Differential Equations 13 (2001), no. 1, 1–18. 10.1007/PL00009921Search in Google Scholar

[14] A. Chambolle, M. Morini and M. Ponsiglione, Nonlocal curvature flows, Arch. Ration. Mech. Anal. 218 (2015), no. 3, 1263–1329. 10.1007/s00205-015-0880-zSearch in Google Scholar

[15] G. Dal Maso, An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl. 8, Birkhäuser, Boston, 1993. 10.1007/978-1-4612-0327-8Search in Google Scholar

[16] J. Dávila, On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations 15 (2002), no. 4, 519–527. 10.1007/s005260100135Search in Google Scholar

[17] A. De Rosa and D. A. La Manna, A non local approximation of the Gaussian perimeter: Gamma convergence and isoperimetric properties, Commun. Pure Appl. Anal. 20 (2021), no. 5, 2101–2116. Search in Google Scholar

[18] S. Dipierro, A comparison between the nonlocal and the classical worlds: Minimal surfaces, phase transitions, and geometric flows, Notices Amer. Math. Soc. 67 (2020), no. 9, 1324–1335. 10.1090/noti2147Search in Google Scholar

[19] S. Dipierro, A. Figalli, G. Palatucci and E. Valdinoci, Asymptotics of the s-perimeter as s 0 , Discrete Contin. Dyn. Syst. 33 (2013), no. 7, 2777–2790. 10.3934/dcds.2013.33.2777Search in Google Scholar

[20] A. Ehrhard, Symétrisation dans l’espace de Gauss, Math. Scand. 53 (1983), no. 2, 281–301. 10.7146/math.scand.a-12035Search in Google Scholar

[21] A. Ehrhard, Inégalités isopérimétriques et intégrales de Dirichlet gaussiennes, Ann. Sci. Éc. Norm. Supér. (4) 17 (1984), no. 2, 317–332. 10.24033/asens.1474Search in Google Scholar

[22] I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L 1 , SIAM J. Math. Anal. 23 (1992), no. 5, 1081–1098. 10.1137/0523060Search in Google Scholar

[23] L. Lombardini, Fractional perimeters from a fractal perspective, Adv. Nonlinear Stud. 19 (2019), no. 1, 165–196. 10.1515/ans-2018-2016Search in Google Scholar

[24] A. Lunardi, G. Metafune and D. Pallara, The Ornstein–Uhlenbeck semigroup in finite dimension, Philos. Trans. Roy. Soc. A 378 (2020), no. 2185, Article ID 20200217. 10.1098/rsta.2020.0217Search in Google Scholar PubMed PubMed Central

[25] C. Martínez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators, North-Holland Math. Stud. 187, North-Holland, Amsterdam, 2001. Search in Google Scholar

[26] J. M. Mazón, J. D. Rossi and J. J. Toledo, Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets, Front. Math., Birkhäuser/Springer, Cham, 2019. 10.1007/978-3-030-06243-9Search in Google Scholar

[27] V. Maz’ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. 195 (2002), no. 2, 230–238. 10.1006/jfan.2002.3955Search in Google Scholar

[28] M. Novaga, D. Pallara and Y. Sire, A fractional isoperimetric problem in the Wiener space, J. Anal. Math. 134 (2018), no. 2, 787–800. 10.1007/s11854-018-0026-ySearch in Google Scholar

[29] A. C. Ponce, A new approach to Sobolev spaces and connections to Γ-convergence, Calc. Var. Partial Differential Equations 19 (2004), no. 3, 229–255. 10.1007/s00526-003-0195-zSearch in Google Scholar

[30] O. Savin and E. Valdinoci, Γ-convergence for nonlocal phase transitions, Ann. Inst. H. Poincaré Anal. Non Linéaire 29 (2012), no. 4, 479–500. 10.1016/j.anihpc.2012.01.006Search in Google Scholar

[31] P. R. Stinga and J. L. Torrea, Extension problem and Harnack’s inequality for some fractional operators, Comm. Partial Differential Equations 35 (2010), no. 11, 2092–2122. 10.1080/03605301003735680Search in Google Scholar

[32] V. N. Sudakov and B. S. Cirel’son, Extremal properties of half-spaces for spherically invariant measures, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974), 14–24, 165. Search in Google Scholar

[33] E. Valdinoci, A fractional framework for perimeters and phase transitions, Milan J. Math. 81 (2013), no. 1, 1–23. 10.1007/s00032-013-0199-xSearch in Google Scholar

Received: 2021-03-30
Accepted: 2021-08-19
Published Online: 2021-12-02
Published in Print: 2023-07-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2023 from https://www.degruyter.com/document/doi/10.1515/acv-2021-0032/html
Scroll to top button