Abstract
We consider the sub-Riemannian 3-sphere
Funding source: Ministerio de Economía y Competitividad
Award Identifier / Grant number: MTM2017-84851-C2-1-P
Funding source: Agencia Estatal de Investigación
Award Identifier / Grant number: PID2020-118180GB-I00
Funding source: Junta de Andalucía
Award Identifier / Grant number: A-FQM-441-UGR18
Award Identifier / Grant number: PY20-00164
Funding statement: The authors were partially supported by MEC-Feder grant MTM2017-84851-C2-1-P, the research grant PID2020-118180GB-I00 funded by MCIN/AEI/10.13039/501100011033, and by Junta de Andalucía grants A-FQM-441-UGR18 and PY20-00164.
References
[1] V. Barone Adesi, F. Serra Cassano and D. Vittone, The Bernstein problem for intrinsic graphs in Heisenberg groups and calibrations, Calc. Var. Partial Differential Equations 30 (2007), no. 1, 17–49. 10.1007/s00526-006-0076-3Search in Google Scholar
[2]
L. Capogna, G. Citti and M. Manfredini,
Regularity of non-characteristic minimal graphs in the Heisenberg group
[3] L. Capogna, D. Danielli, S. D. Pauls and J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Progr. Math. 259, Birkhäuser, Basel, 2007. Search in Google Scholar
[4] S. Chanillo and P. Yang, Isoperimetric inequalities & volume comparison theorems on CR manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), no. 2, 279–307. 10.2422/2036-2145.2009.2.03Search in Google Scholar
[5] J.-H. Cheng, H.-L. Chiu, J.-F. Hwang and P. Yang, Strong maximum principle for mean curvature operators on subRiemannian manifolds, Math. Ann. 372 (2018), no. 3–4, 1393–1435. 10.1007/s00208-018-1700-1Search in Google Scholar
[6] J.-H. Cheng, J.-F. Hwang, A. Malchiodi and P. Yang, Minimal surfaces in pseudohermitian geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 1, 129–177. 10.2422/2036-2145.2005.1.05Search in Google Scholar
[7]
J.-H. Cheng, J.-F. Hwang, A. Malchiodi and P. Yang,
A Codazzi-like equation and the singular set for
[8] J.-H. Cheng, J.-F. Hwang and P. Yang, Existence and uniqueness for p-area minimizers in the Heisenberg group, Math. Ann. 337 (2007), no. 2, 253–293. 10.1007/s00208-006-0033-7Search in Google Scholar
[9] A. Hurtado and C. Rosales, Area-stationary surfaces inside the sub-Riemannian three-sphere, Math. Ann. 340 (2008), no. 3, 675–708. 10.1007/s00208-007-0165-4Search in Google Scholar
[10] A. Hurtado and C. Rosales, Existence, characterization and stability of Pansu spheres in sub-Riemannian 3-space forms, Calc. Var. Partial Differential Equations 54 (2015), no. 3, 3183–3227. 10.1007/s00526-015-0898-ySearch in Google Scholar
[11] A. Hurtado and C. Rosales, Strongly stable surfaces in sub-Riemannian 3-space forms, Nonlinear Anal. 155 (2017), 115–139. 10.1016/j.na.2017.01.003Search in Google Scholar
[12] A. Hurtado and C. Rosales, An instability criterion for volume-preserving area-stationary surfaces with singular curves in sub-Riemannian 3-space forms, Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 165. 10.1007/s00526-020-01834-1Search in Google Scholar
[13] M. Miranda, Jr., Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl. (9) 82 (2003), no. 8, 975–1004. 10.1016/S0021-7824(03)00036-9Search in Google Scholar
[14] R. Monti, F. Serra Cassano and D. Vittone, A negative answer to the Bernstein problem for intrinsic graphs in the Heisenberg group, Boll. Unione Mat. Ital. (9) 1 (2008), no. 3, 709–727. Search in Google Scholar
[15]
R. Monti and D. Vittone,
Sets with finite
[16] P. Pansu, Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 2, 127–130. Search in Google Scholar
[17] P. Pansu, An isoperimetric inequality on the Heisenberg group, Rend. Semin. Mat. Univ. Politec. Torino (1984), no. Special Issue, 159–174. Search in Google Scholar
[18]
S. D. Pauls,
H-minimal graphs of low regularity in
[19]
J. Pozuelo and M. Ritoré,
Pansu–Wulff shapes in
[20] D. Prandi, L. Rizzi and M. Seri, A sub-Riemannian Santaló formula with applications to isoperimetric inequalities and first Dirichlet eigenvalue of hypoelliptic operators, J. Differential Geom. 111 (2019), no. 2, 339–379. 10.4310/jdg/1549422105Search in Google Scholar
[21]
M. Ritoré,
Examples of area-minimizing surfaces in the sub-Riemannian Heisenberg group
[22] M. Ritoré, Geometric flows, isoperimetric inequalities and hyperbolic geometry, Mean Curvature Flow and Isoperimetric Inequalities, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel (2010), 45–113. 10.1007/978-3-0346-0213-6Search in Google Scholar
[23]
M. Ritoré,
A proof by calibration of an isoperimetric inequality in the Heisenberg group
[24]
M. Ritoré and C. Rosales,
Area-stationary surfaces in the Heisenberg group
© 2022 Walter de Gruyter GmbH, Berlin/Boston