Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 19, 2022

Helmut Salzmann and his legacy

Rainer Löwen
From the journal Advances in Geometry

Abstract

We describe the development of the mathematics of Helmut R. Salzmann (3. 11. 1930 – 8. 3. 2022) and the main difficulties he was facing, documenting his lifelong productivity and his far reaching influence. We include a comprehensive bibliography of his work.

MSC 2010: 51H10
  1. Communicated by: T. Grundhöfer

References

[1] J. F. Adams, On the non-existence of elements of Hopf invariant one. Ann. of Math. (2) 72 (1960), 20–104. MR141119 Zbl 0096.1740410.2307/1970147Search in Google Scholar

[2] R. Arens, Topologies for homeomorphism groups. Amer. J. Math. 68 (1946), 593–610. MR19916 Zbl 0061.2430610.2307/2371787Search in Google Scholar

[3] D. Betten, Nicht-desarguessche 4-dimensionale Ebenen. Arch. Math. Basel) 21 (1970), 100–102. MR259740 Zbl 0204.5350110.1007/BF01220886Search in Google Scholar

[4] D. Betten, 4-dimensionale Translationsebenen. Math. Z. 128 (1972), 129–151. MR312389 Zbl 0231.5001110.1007/BF01111474Search in Google Scholar

[5] D. Betten, 4-dimensionale Translationsebenen mit 8-dimensionaler Kollineationsgruppe. Geom. Dedicata 2 (1973), 327–339. MR338888 Zbl 0272.5002810.1007/BF00181477Search in Google Scholar

[6] D. Betten, 4-dimensionale Translationsebenen mit irreduzibler Kollineationsgruppe. Arch. Math. Basel) 24 (1973), 552–560. MR350613 Zbl 0273.5001810.1007/BF01228253Search in Google Scholar

[7] D. Betten, Die komplex-hyperbolische Ebene. Math. Z. 132 (1973), 249–259. MR324537 Zbl 0263.5001110.1007/BF01213870Search in Google Scholar

[8] R. Bödi, On the dimensions of automorphism groups of 8-dimensional ternary fields. I. J. Geom. 52 (1995), 30–40. MR1317253 Zbl 0829.5100610.1007/BF01406824Search in Google Scholar

[9] R. Bödi, On the dimensions of automorphism groups of eight-dimensional ternary fields. II. Geom. Dedicata 53 (1994), 201–216. MR1307293 Zbl 0829.5100710.1007/BF01264022Search in Google Scholar

[10] L. E. J. Brouwer, Die Theorie der endlichen kontinuierlichen Gruppen, unabhängig von den Axiomen von Lie. Math. Ann. 67 (1909), 246–267. MR1511528 Zbl 0263664410.1007/BF01450182Search in Google Scholar

[11] L. E. J. Brouwer, Beweis des ebenen Translationssatzes. Math. Ann. 72 (1912), 37–54. MR1511684 Zbl 0262610410.1007/BF01456888Search in Google Scholar

[12] P. Dembowski, Generalized Hughes planes. Canadian J. Math. 23 (1971), 481–494. MR295204 Zbl 0216.1800210.4153/CJM-1971-051-4Search in Google Scholar

[13] H. Freudenthal, Kompakte projektive Ebenen. Illinois J. Math. 1 (1957), 9–13. MR84786 Zbl 0077.3380910.1215/ijm/1255378501Search in Google Scholar

[14] H. Freudenthal, Zur Geschichte der Grundlagen der Geometrie. Zugleich eine Besprechung der 8. Aufl. von Hilberts “Grundlagen der Geometrie”. Nieuw Arch. Wisk. (3) 5 (1957), 105–142. MR98003 Zbl 0078.12902Search in Google Scholar

[15] T. Grundhöfer, Automorphism groups of compact projective planes. Geom. Dedicata 21 (1986), 291–298. MR867162 Zbl 0601.5102010.1007/BF00181534Search in Google Scholar

[16] T. Grundhöfer, R. Löwen, Linear topological geometries. In: Handbook of incidence geometry, 1255–1324, North-Holland 1995. MR1360738 Zbl 0824.5101110.1016/B978-044488355-1/50025-6Search in Google Scholar

[17] H. Hähl, Homologies and elations in compact, connected projective planes. Topology Appl. 12 (1981), 49–63. MR600463 Zbl 0446.5101010.1016/0166-8641(81)90029-8Search in Google Scholar

[18] H. Hähl, Charakterisierung der kompakten, zusammenhängenden Moufang–Hughes-Ebenen anhand ihrer Kollineationen. Math. Z. 191 (1986), 117–136. MR812606 Zbl 0581.5101510.1007/BF01163613Search in Google Scholar

[19] H. Hähl, Die Oktavenebene als Translationsebene mit großer Kollineationsgruppe. Monatsh. Math. 106 (1988), 265–299. MR973139 Zbl 0691.5100710.1007/BF01295287Search in Google Scholar

[20] H. Hähl, Sechzehndimensionale lokalkompakte Translationsebenen, deren Kollineationsgruppe G2 enthält. Geom. Dedicata 36 (1990), 181–197. MR1076857 Zbl 0719.51011Search in Google Scholar

[21] H. Hähl, Geometrisch homogene vierdimensionale reelle Divisionsalgebren. Geom. Dedicata 4 (1975), 333–361. MR400033 Zbl 0325.5001410.1007/BF00148767Search in Google Scholar

[22] H. Hähl, Achtdimensionale lokalkompakte Translationsebenen mit mindestens 17-dimensionaler Kollineationsgruppe. Geom. Dedicata 21 (1986), 299–340. MR867163 Zbl 0605.5101110.1007/BF00181535Search in Google Scholar

[23] D. Hilbert, Grundlagen der Geometrie. Volume 6 of Teubner-Archiv zur Mathematik. Teubner Verlagsgesellschaft, Stuttgart 1999. MR1732507 Zbl 0933.01031Search in Google Scholar

[24] K. H. Hofmann, L. Kramer, Transitive actions of locally compact groups on locally contractible spaces. J. Reine Angew. Math. 702 (2015), 227–243. MR3341471 Zbl 1330.2202310.1515/crelle-2013-0036Search in Google Scholar

[25] H. Hopf, H. Samelson, Ein Satz über die Wirkungsräume geschlossener Liescher Gruppen. Comment. Math. Helv. 13 (1941), 240–251. MR6546 Zbl 0250410910.1007/BF01378063Search in Google Scholar

[26] F. Kalscheuer, Die Bestimmung aller stetigen Fastkörper über dem Körper der reellen Zahlen als Grundkörper. Abh. Math. Sem. Hansischen Univ. 13 (1940), 413–435. MR1968 Zbl 0250567710.1007/BF02940769Search in Google Scholar

[27] R. Löwen, Vierdimensionale stabile Ebenen. Geom. Dedicata 5 (1976), 239–294. MR428187 Zbl 0344.5000310.1007/BF00145961Search in Google Scholar

[28] R. Löwen, Projectivities and the geometric structure of topological planes. In: Geometry—von Staudt’s point of view Proc. Bad Windsheim, 1980), 339–372, Reidel, Dordrecht-Boston, Mass. 1981. MR621322 Zbl 0458.5101510.1007/978-94-009-8489-9_13Search in Google Scholar

[29] R. Löwen, Homogeneous compact projective planes. J. Reine Angew. Math. 321 (1981), 217–220. MR597992 Zbl 0443.51012Search in Google Scholar

[30] R. Löwen, Stable planes with isotropic points. Math. Z. 182 (1983), 49–61. MR686886 Zbl 0506.5101210.1007/BF01162593Search in Google Scholar

[31] R. Löwen, Topology and dimension of stable planes: on a conjecture of H. Freudenthal. J. Reine Angew. Math. 343 (1983), 108–122. MR705880 Zbl 0524.57011Search in Google Scholar

[32] M. Lüneburg, Involutionen, auflösbare Gruppen und die Klassifikation topologischer Ebenen. Mitt. Math. Sem. Giessen no. 209 (1992), 113 pages. MR1180698 Zbl 0764.51013Search in Google Scholar

[33] A. Kolmogoroff, Zur Begründung der projektiven Geometrie. Ann. of Math. (2) 33 (1932), 175–176. MR1503044 Zbl 0255088310.2307/1968111Search in Google Scholar

[34] P. Maier, M. Stroppel, Pseudo-homogeneous coordinates for Hughes planes. Canad. Math. Bull. 39 (1996), 330–345. MR1411076 Zbl 0863.5100410.4153/CMB-1996-040-9Search in Google Scholar

[35] L. N. Mann, Dimensions of compact transformation groups. Michigan Math. J. 14 (1967), 433–444. MR220864 Zbl 0312.5703010.1307/mmj/1028999845Search in Google Scholar

[36] D. Montgomery, Simply connected homogeneous spaces. Proc. Amer. Math. Soc. 1 (1950), 467–469. MR37311 Zbl 0041.3630910.1090/S0002-9939-1950-0037311-6Search in Google Scholar

[37] D. Montgomery, L. Zippin, Topological transformation groups. Interscience Publ. 1955. MR0073104 Zbl 0068.01904Search in Google Scholar

[38] M. H. A. Newman, A theorem on periodic transformations of spaces. Quart. J. Math. Oxford 2 (1931), 1–8. Zbl 0001.2270310.1093/qmath/os-2.1.1-aSearch in Google Scholar

[39] K. Niemann, Geometrie und Topologie der sechzehndimensionalen Moufang–Hughes-Ebenen. Staatsexamensarbeit, Universität Kiel, 1990.Search in Google Scholar

[40] G. Pickert, Projektive Ebenen. Springer 1955. MR0073211 Zbl 0066.3870710.1007/978-3-662-00110-3Search in Google Scholar

[41] P. Plaumann, K. Strambach, Zusammenhängende Quasikörper mit Zentrum. Arch. Math. Basel) 21 (1970), 455–465. MR277575 Zbl 0215.3880110.1007/BF01220946Search in Google Scholar

[42] P. Plaumann, K. Strambach, Hurwitzsche Ternärkörper. Arch. Math. Basel) 25 (1974), 129–134. MR346083 Zbl 0284.5000910.1007/BF01238652Search in Google Scholar

[43] J. Poncet, Groupes de Lie compacts de transformations de l’espace euclidien et les sphères comme espaces homogènes. Comment. Math. Helv. 33 (1959), 109–120. MR103946 Zbl 0084.1900610.1007/BF02565911Search in Google Scholar

[44] B. Polster, G. Steinke, Geometries on surfaces, volume 84 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 2001. MR1889925 Zbl 0995.5100410.1017/CBO9780511549656Search in Google Scholar

[45] L. Pontrjagin, Über stetige algebraische Körper. Ann. of Math. (2) 33 (1932), 163–174. MR1503043 Zbl 0254937110.2307/1968110Search in Google Scholar

[46] B. Priwitzer, Large automorphism groups of 8-dimensional projective planes are Lie groups. Geom. Dedicata 52 (1994), 33–40. MR1296144 Zbl 0810.5100310.1007/BF01263522Search in Google Scholar

[47] R. W. Richardson, Jr., Groups acting on the 4-sphere. Illinois J. Math. 5 (1961), 474–485. MR142681 Zbl 0099.39105Search in Google Scholar

[48] H. Salzmann, K. Zeller, Singularitäten unendlich oft differenzierbarer Funktionen. Math. Z. 62 (1955), 354–367. MR71479 Zbl 0064.2990310.1007/BF01180644Search in Google Scholar

[49] H. Salzmann, Über den Zusammenhang in topologischen projektiven Ebenen. Math. Z. 61 (1955), 489–494. MR68206 Zbl 0064.1780210.1007/BF01181361Search in Google Scholar

[50] H. Salzmann, Topologische projektive Ebenen. Math. Z. 67 (1957), 436–466. MR104193 Zbl 0078.3410310.1016/B978-0-08-009610-0.50023-1Search in Google Scholar

[51] H. Salzmann, Kompakte zweidimensionale projektive Ebenen. Arch. Math. Basel) 9 (1958), 447–454. MR132449 Zbl 0082.3580210.1007/BF01898629Search in Google Scholar

[52] H. Salzmann, Homomorphismen topologischer projektiver Ebenen. Arch. Math. 10 (1959), 51–55. MR132450 Zbl 0084.3710210.1007/BF01240760Search in Google Scholar

[53] H. Salzmann, Topologische Struktur zweidimensionaler projektiver Ebenen. Math. Z. 71 (1959), 408–413. MR139992 Zbl 0092.3840210.1007/BF01181412Search in Google Scholar

[54] H. Salzmann, Viereckstransitivität der kleinen projektiven Gruppe einer Moufang-Ebene. Illinois J. Math. 3 (1959), 174–181. MR105053 Zbl 0085.1420310.1215/ijm/1255455119Search in Google Scholar

[55] H. Salzmann, Kompakte zweidimensionale projektive Ebenen. Math. Ann. 145 (1961/62), 401–428. MR139069 Zbl 0103.1350310.1007/BF01471086Search in Google Scholar

[56] H. Salzmann, Topologische projektive Ebenen. In: Algebraical and Topological Foundations of Geometry Proc. Colloq., Utrecht, 1959), 157–163, Pergamon, Oxford 1962. MR0139068 Zbl 0123.1330810.1016/B978-0-08-009610-0.50023-1Search in Google Scholar

[57] H. Salzmann, Kompakte Ebenen mit einfacher Kollineationsgruppe. Arch. Math. 13 (1962), 98–109. MR143101 Zbl 0105.1320110.1007/BF01650053Search in Google Scholar

[58] H. Salzmann, Characterization of the three classical plane geometries. Illinois J. Math. 7 (1963), 543–547. MR156256 Zbl 0188.2450110.1215/ijm/1255645092Search in Google Scholar

[59] H. Salzmann, Zur Klassifikation topologischer Ebenen. Math. Ann. 150 (1963), 226–241. MR151941 Zbl 0135.3920110.1007/BF01396992Search in Google Scholar

[60] H. Salzmann, Zur Klassifikation topologischer Ebenen. II. Abh. Math. Sem. Univ. Hamburg 27 (1964), 145–166. MR166675 Zbl 0135.3920110.1007/BF01396992Search in Google Scholar

[61] H. Salzmann, Zur Klassifikation topologischer Ebenen. III. Abh. Math. Sem. Univ. Hamburg 28 (1965), 250–261. MR185505 Zbl 0167.4900110.1007/BF01396992Search in Google Scholar

[62] H. Busemann, H. Salzmann, Metric collineations and inverse problems. Math. Z. 87 (1965), 214–240. MR177378 Zbl 0125.1110210.1007/BF01109941Search in Google Scholar

[63] H. Salzmann, Polaritäten von Moulton-Ebenen. Abh. Math. Sem. Univ. Hamburg 29 (1966), 212–216. MR199773 Zbl 0139.3780410.1007/BF03016049Search in Google Scholar

[64] H. Salzmann, Kollineationsgruppen ebener Geometrien. Math. Z. 99 (1967), 1–15. MR212671 Zbl 0146.4160410.1007/BF01118683Search in Google Scholar

[65] H. R. Salzmann, Topological planes. Advances in Math. 2 (1967), 1–60. MR220135 Zbl 0153.2160110.1016/S0001-8708(67)80002-1Search in Google Scholar

[66] H. Salzmann, Topological geometries. In: Proc. Projective Geometry Conf. Univ. Illinois 1967, 119–120. MR0220557 Zbl 0167.49101Search in Google Scholar

[67] H. Salzmann, Geometries on surfaces. Pacific J. Math. 29 (1969), 397–402. MR248855 Zbl 0181.2330110.2140/pjm.1969.29.397Search in Google Scholar

[68] H. Salzmann, Kompakte vier-dimensionale Ebenen. Arch. Math. Basel) 20 (1969), 551–555. MR253145 Zbl 0189.2080110.1007/BF01899463Search in Google Scholar

[69] H. Salzmann, Homomorphismen komplexer Ternärkörper. Math. Z. 112 (1969), 23–25. MR250186 Zbl 0176.1760110.1007/BF01277491Search in Google Scholar

[70] H. Salzmann, Kollineationsgruppen kompakter, vier-dimensionaler Ebenen. Math. Z. 117 (1970), 112–124. MR279688 Zbl 0205.5010410.1007/BF01109833Search in Google Scholar

[71] H. Salzmann, Kollineationsgruppen kompakter 4-dimensionaler Ebenen. II. Math. Z. 121 (1971), 104–110. MR284913 Zbl 0218.5000910.1007/BF01113480Search in Google Scholar

[72] H. Salzmann, Zahlbereiche. Teil I: Die reellen Zahlen. Universität Tübingen, 1971. Zbl 0257.12101Search in Google Scholar

[73] H. Salzmann, 4-dimensional projective planes of Lenz type III. Geom. Dedicata 1 (1972), 18–20. MR313939 Zbl 0255.5001310.1007/BF00147377Search in Google Scholar

[74] H. Salzmann, Homogene 4-dimensionale affine Ebenen. Math. Ann. 196 (1972), 320–322. MR301631 Zbl 0221.5000810.1007/BF01428220Search in Google Scholar

[75] H. Salzmann, Baer-Unterebenen 4-dimensionaler Ebenen. Arch. Math. Basel) 23 (1972), 337–341. MR319042 Zbl 0245.5002610.1007/BF01304891Search in Google Scholar

[76] H. Salzmann, Elations in four-dimensional planes. General Topology and Appl. 3 (1973), 121–124. MR326569 Zbl 0258.5002310.1016/0016-660X(73)90013-5Search in Google Scholar

[77] H. Salzmann, Kompakte, vier-dimensionale projektive Ebenen mit 8-dimensionaler Kollineationsgruppe. Math. Z. 130 (1973), 235–247. MR326570 Zbl 0239.5001410.1007/BF01246621Search in Google Scholar

[78] H. Salzmann, Zahlbereiche. Teil II: Die rationalen Zahlen. Teil III: Die komplexen Zahlen. Universität Tübingen, 1973. Zbl 0286.12101Search in Google Scholar

[79] H. Salzmann, Reelle Kollineationen der komplexen projektiven Ebene. Geom. Dedicata 1 (1973), 344–348. MR317163 Zbl 0253.5001110.1007/BF00147768Search in Google Scholar

[80] H. Salzmann, In memoriam: Peter Dembowski. In: Proceedings of the International Conference on Projective Planes Washington State Univ., Pullman, Wash., 1973), 1–6, 1973. MR0354282 Zbl 0269.01011Search in Google Scholar

[81] H. Salzmann, Compact planes of Lenz type III. Geom. Dedicata 3 (1974), 399–403. MR367797 Zbl 0288.5002810.1007/BF00181330Search in Google Scholar

[82] H. Salzmann, Homogene kompakte projektive Ebenen. Pacific J. Math. 60 (1975), 217–234. MR400043 Zbl 0323.5000910.2140/pjm.1975.60.217Search in Google Scholar

[83] H. Salzmann, Homogene affine Ebenen. Abh. Math. Sem. Univ. Hamburg 43 (1975), 216–220. MR380620 Zbl 0307.5002210.1007/BF02995952Search in Google Scholar

[84] H. Salzmann, Zur nicht-euklidischen Geometrie. Abh. Braunschweig. Wiss. Ges. 27 (1977), 119. MR497718 Zbl 0397.51005Search in Google Scholar

[85] H. Salzmann, Compact 8-dimensional projective planes with large collineation groups. Geom. Dedicata 8 (1979), 139–161. MR538522 Zbl 0465.5100310.1007/BF00181484Search in Google Scholar

[86] H. Salzmann, Automorphismengruppen 8-dimensionaler Ternärkörper. Math. Z. 166 (1979), 265–275. MR526467 Zbl 0406.5101310.1007/BF01214146Search in Google Scholar

[87] H. Salzmann, Kompakte, 8-dimensionale projektive Ebenen mit großer Kollineationsgruppe. Math. Z. 176 (1981), 345–357. MR610215 Zbl 0465.5100410.1007/BF01214611Search in Google Scholar

[88] H. Salzmann, Projectivities and the topology of lines. In: Geometry—von Staudt’s point of view Proc. Bad Windsheim, 1980), 313–337, Reidel, Dordrecht-Boston, Mass. 1981. MR621321 Zbl 0462.5101210.1007/978-94-009-8489-9_12Search in Google Scholar

[89] H. Salzmann, Baer-Kollineationsgruppen der klassischen projektiven Ebenen. Arch. Math. Basel) 38 (1982), 374–377. MR658385 Zbl 0496.5100510.1007/BF01304802Search in Google Scholar

[90] H. Salzmann, Compact 16-dimensional projective planes with large collineation groups. Math. Ann. 261 (1982), 447–454. MR682656 Zbl 0497.5101510.1007/BF01457446Search in Google Scholar

[91] R. Löwen, H. Salzmann, Collineation groups of compact connected projective planes. Arch. Math. Basel) 38 (1982), 368–373. MR658384 Zbl 0498.5101410.1007/BF01304801Search in Google Scholar

[92] H. Salzmann, Compact 16-dimensional projective planes with large collineation groups. II. Monatsh. Math. 95 (1983), 311–319. MR718066 Zbl 0507.5100910.1007/BF01547801Search in Google Scholar

[93] H. Salzmann, Compact 16-dimensional projective planes with large collineation groups. III. Math. Z. 185 (1984), 185–190. MR731339 Zbl 0544.5101210.1007/BF01181689Search in Google Scholar

[94] H. Salzmann, Homogeneous translation groups. Arch. Math. Basel) 44 (1985), 95–96. MR778998 Zbl 0559.5100710.1007/BF01193787Search in Google Scholar

[95] H. Salzmann, Compact 16-dimensional projective planes with large collineation groups. IV. Canad. J. Math. 39 (1987), 908–919. MR915022 Zbl 0641.5100610.4153/CJM-1987-045-4Search in Google Scholar

[96] H. Salzmann, Compact 8-dimensional projective planes. Forum Math. 2 (1990), 15–34. MR1030624 Zbl 0684.5101210.1515/form.1990.2.15Search in Google Scholar

[97] T. Grundhöfer, H. Salzmann, Locally compact double loops and ternary fields. In: Quasigroups and loops: theory and applications, volume 8 of Sigma Ser. Pure Math., 313–355, Heldermann, Berlin 1990. MR1125817 Zbl 0749.51016Search in Google Scholar

[98] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, M. Stroppel, Compact projective planes, volume 21 of De Gruyter Expositions in Mathematics. De Gruyter 1995. MR1384300 Zbl 0851.5100310.1515/9783110876833Search in Google Scholar

[99] H. Salzmann, Characterization of 16-dimensional Hughes planes. Arch. Math. Basel) 71 (1998), 249–256. MR1637394 Zbl 0926.5101610.1007/s000130050261Search in Google Scholar

[100] B. Priwitzer, H. Salzmann, Large automorphism groups of 16-dimensional planes are Lie groups. J. Lie Theory 8 (1998), 83–93. MR1616782 Zbl 0902.51012Search in Google Scholar

[101] H. Salzmann, Compact 16-dimensional projective planes. Results Math. 35 (1999), 192–196. MR1678123 Zbl 0933.5100810.1007/BF03322032Search in Google Scholar

[102] H. Salzmann, Large automorphism groups of 16-dimensional planes are Lie groups. II. J. Lie Theory 9 (1999), 481–486. MR1718234 Zbl 1014.51007Search in Google Scholar

[103] H. Salzmann, On the classification of 16-dimensional planes. Beiträge Algebra Geom. 41 (2000), 557–568. MR1801443 Zbl 0980.51012Search in Google Scholar

[104] H. Salzmann, Near-homogeneous 16-dimensional planes. Adv. Geom. 1 (2001), 145–155. MR1840218 Zbl 1002.5101110.1515/advg.2001.010Search in Google Scholar

[105] H. Salzmann, Baer subplanes. Illinois J. Math. 47 (2003), 485–513. MR2031336 Zbl 1036.5100210.1215/ijm/1258488168Search in Google Scholar

[106] H. Salzmann, 16-dimensional compact projective planes with 3 fixed points. Adv. Geom. 2003, special issue, S153–S157. MR2028394 Zbl 1043.5101110.1515/advg.2003.2003.s1.153Search in Google Scholar

[107] H. Hähl, H. Salzmann, 16-dimensional compact projective planes with a large group fixing two points and two lines. Arch. Math. Basel) 85 (2005), 89–100. MR2155114 Zbl 1077.5100310.1007/s00013-004-1019-xSearch in Google Scholar

[108] H. Salzmann, T. Grundhöfer, H. Hähl, R. Löwen, The classical fields, volume 112 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 2007. MR2357231 Zbl 1173.0000610.1017/CBO9780511721502Search in Google Scholar

[109] H. Salzmann, 16-dimensional compact projective planes with a collineation group of dimension ≥ 35. Arch. Math. Basel) 90 (2008), 284–288. MR2391364 Zbl 1155.5100710.1007/s00013-007-2466-ySearch in Google Scholar

[110] H. R. Salzmann, Classification of 8-dimensional compact projective planes. J. Lie Theory 20 (2010), 689–708. MR2778232 Zbl 1228.51012Search in Google Scholar

[111] H. Hähl, H. Salzmann, 16-dimensional compact projective planes with a large group fixing two points and only one line. Innov. Incidence Geom. 11 (2010), 213–235. MR2795064 Zbl 1263.5100910.2140/iig.2010.11.213Search in Google Scholar

[112] H. R. Salzmann, 8-dimensional compact planes with an automorphism group which has a normal vector subgroup. J. Lie Theory 24 (2014), 123–146. MR3186331 Zbl 1296.51015Search in Google Scholar

[113] H. R. Salzmann, Reminiszenzen an Günter Pickert. J. Geom. 107 (2016), 221–224. MR3519944 Zbl 1354.0103210.1007/s00022-015-0285-zSearch in Google Scholar

[114] H. R. Salzmann, Semi-simple groups of compact 16-dimensional planes. J. Geom. 107 (2016), 249–255. MR3519946 Zbl 1371.5100410.1007/s00022-015-0295-xSearch in Google Scholar

[115] H. R. Salzmann, Groups of compact 8-dimensional planes: conditions implying the Lie property. Innov. Incidence Geom. 17 (2019), 201–220. MR4016626 Zbl 1428.2200610.2140/iig.2019.17.201Search in Google Scholar

[116] H. Salzmann, Compact planes, mostly 8-dimensional. A retrospect (2014). arXiv:1402.0304 [math.GT]Search in Google Scholar

[117] H. Salzmann, Compact 16-dimensional planes. An update (2017). arXiv:1706.03696 [math.GT]Search in Google Scholar

[118] H.-P. Seidel, Locally homogeneous ANR-spaces. Arch. Math. Basel) 44 (1985), 79–81. MR778995 Zbl 0532.5401510.1007/BF01193784Search in Google Scholar

[119] L. A. Skornyakov, Topological projective planes (Russian). Trudy Moskov. Mat. Obšč. 3 (1954), 347–373. MR0063026 Zbl 0057.36201Search in Google Scholar

[120] L. A. Skornyakov, Systems of curves on a plane (Russian). Trudy Moskov Mat. Obšč. 6 (1957), 135–164. MR0065149 Zbl 0081.17101Search in Google Scholar

[121] G. F. Steinke, Topological circle geometries. In: Handbook of incidence geometry, 1325–1354, North-Holland 1995. MR1360739 Zbl 0824.5101210.1016/B978-044488355-1/50026-8Search in Google Scholar

[122] M. Stroppel, Stable planes with large groups of automorphisms: the interplay of incidence, topology, and homogeneity. Habilitationsschrift, Darmstadt 1993.Search in Google Scholar

[123] M. Stroppel, Lie theory for non-Lie groups. J. Lie Theory 4 (1994), 257–284. MR1337193 Zbl 0834.22009Search in Google Scholar

[124] J. Szenthe, On the topological characterization of transitive Lie group actions. Acta Sci. Math. Szeged) 36 (1974), 323–344. MR360921 Zbl 0269.57019Search in Google Scholar

[125] J. Tits, Sur les groupes doublement transitifs continus. Comment. Math. Helv. 26 (1952), 203–224. MR51238 Zbl 0047.2600210.1007/BF02564302Search in Google Scholar

[126] J. Tits, Sur certaines classes d’espaces homogènes de groupes de Lie. Acad. Roy. Belg. Cl. Sci. Mém. Coll. in 8 29 (1955), 268. MR76286 Zbl 0067.12301Search in Google Scholar

[127] J. Tits, Sur les groupes doublement transitifs continus: correction et compléments. Comment. Math. Helv. 30 (1956), 234–240. MR77880 Zbl 0070.0250510.1007/BF02564343Search in Google Scholar

Received: 2022-08-20
Published Online: 2022-10-19
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.11.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/advgeom-2022-0023/html
Scroll Up Arrow