Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 19, 2022

Helmut Salzmann and his legacy

  • Rainer Löwen
From the journal Advances in Geometry

Abstract

We describe the development of the mathematics of Helmut R. Salzmann (3. 11. 1930 – 8. 3. 2022) and the main difficulties he was facing, documenting his lifelong productivity and his far reaching influence. We include a comprehensive bibliography of his work.

MSC 2010: 51H10
  1. Communicated by: T. Grundhöfer

References

[1] J. F. Adams, On the non-existence of elements of Hopf invariant one. Ann. of Math. (2) 72 (1960), 20–104. MR141119 Zbl 0096.1740410.2307/1970147Search in Google Scholar

[2] R. Arens, Topologies for homeomorphism groups. Amer. J. Math. 68 (1946), 593–610. MR19916 Zbl 0061.2430610.2307/2371787Search in Google Scholar

[3] D. Betten, Nicht-desarguessche 4-dimensionale Ebenen. Arch. Math. Basel) 21 (1970), 100–102. MR259740 Zbl 0204.5350110.1007/BF01220886Search in Google Scholar

[4] D. Betten, 4-dimensionale Translationsebenen. Math. Z. 128 (1972), 129–151. MR312389 Zbl 0231.5001110.1007/BF01111474Search in Google Scholar

[5] D. Betten, 4-dimensionale Translationsebenen mit 8-dimensionaler Kollineationsgruppe. Geom. Dedicata 2 (1973), 327–339. MR338888 Zbl 0272.5002810.1007/BF00181477Search in Google Scholar

[6] D. Betten, 4-dimensionale Translationsebenen mit irreduzibler Kollineationsgruppe. Arch. Math. Basel) 24 (1973), 552–560. MR350613 Zbl 0273.5001810.1007/BF01228253Search in Google Scholar

[7] D. Betten, Die komplex-hyperbolische Ebene. Math. Z. 132 (1973), 249–259. MR324537 Zbl 0263.5001110.1007/BF01213870Search in Google Scholar

[8] R. Bödi, On the dimensions of automorphism groups of 8-dimensional ternary fields. I. J. Geom. 52 (1995), 30–40. MR1317253 Zbl 0829.5100610.1007/BF01406824Search in Google Scholar

[9] R. Bödi, On the dimensions of automorphism groups of eight-dimensional ternary fields. II. Geom. Dedicata 53 (1994), 201–216. MR1307293 Zbl 0829.5100710.1007/BF01264022Search in Google Scholar

[10] L. E. J. Brouwer, Die Theorie der endlichen kontinuierlichen Gruppen, unabhängig von den Axiomen von Lie. Math. Ann. 67 (1909), 246–267. MR1511528 Zbl 0263664410.1007/BF01450182Search in Google Scholar

[11] L. E. J. Brouwer, Beweis des ebenen Translationssatzes. Math. Ann. 72 (1912), 37–54. MR1511684 Zbl 0262610410.1007/BF01456888Search in Google Scholar

[12] P. Dembowski, Generalized Hughes planes. Canadian J. Math. 23 (1971), 481–494. MR295204 Zbl 0216.1800210.4153/CJM-1971-051-4Search in Google Scholar

[13] H. Freudenthal, Kompakte projektive Ebenen. Illinois J. Math. 1 (1957), 9–13. MR84786 Zbl 0077.3380910.1215/ijm/1255378501Search in Google Scholar

[14] H. Freudenthal, Zur Geschichte der Grundlagen der Geometrie. Zugleich eine Besprechung der 8. Aufl. von Hilberts “Grundlagen der Geometrie”. Nieuw Arch. Wisk. (3) 5 (1957), 105–142. MR98003 Zbl 0078.12902Search in Google Scholar

[15] T. Grundhöfer, Automorphism groups of compact projective planes. Geom. Dedicata 21 (1986), 291–298. MR867162 Zbl 0601.5102010.1007/BF00181534Search in Google Scholar

[16] T. Grundhöfer, R. Löwen, Linear topological geometries. In: Handbook of incidence geometry, 1255–1324, North-Holland 1995. MR1360738 Zbl 0824.5101110.1016/B978-044488355-1/50025-6Search in Google Scholar

[17] H. Hähl, Homologies and elations in compact, connected projective planes. Topology Appl. 12 (1981), 49–63. MR600463 Zbl 0446.5101010.1016/0166-8641(81)90029-8Search in Google Scholar

[18] H. Hähl, Charakterisierung der kompakten, zusammenhängenden Moufang–Hughes-Ebenen anhand ihrer Kollineationen. Math. Z. 191 (1986), 117–136. MR812606 Zbl 0581.5101510.1007/BF01163613Search in Google Scholar

[19] H. Hähl, Die Oktavenebene als Translationsebene mit großer Kollineationsgruppe. Monatsh. Math. 106 (1988), 265–299. MR973139 Zbl 0691.5100710.1007/BF01295287Search in Google Scholar

[20] H. Hähl, Sechzehndimensionale lokalkompakte Translationsebenen, deren Kollineationsgruppe G2 enthält. Geom. Dedicata 36 (1990), 181–197. MR1076857 Zbl 0719.5101110.1007/BF00150787Search in Google Scholar

[21] H. Hähl, Geometrisch homogene vierdimensionale reelle Divisionsalgebren. Geom. Dedicata 4 (1975), 333–361. MR400033 Zbl 0325.5001410.1007/BF00148767Search in Google Scholar

[22] H. Hähl, Achtdimensionale lokalkompakte Translationsebenen mit mindestens 17-dimensionaler Kollineationsgruppe. Geom. Dedicata 21 (1986), 299–340. MR867163 Zbl 0605.5101110.1007/BF00181535Search in Google Scholar

[23] D. Hilbert, Grundlagen der Geometrie. Volume 6 of Teubner-Archiv zur Mathematik. Teubner Verlagsgesellschaft, Stuttgart 1999. MR1732507 Zbl 0933.01031Search in Google Scholar

[24] K. H. Hofmann, L. Kramer, Transitive actions of locally compact groups on locally contractible spaces. J. Reine Angew. Math. 702 (2015), 227–243. MR3341471 Zbl 1330.2202310.1515/crelle-2013-0036Search in Google Scholar

[25] H. Hopf, H. Samelson, Ein Satz über die Wirkungsräume geschlossener Liescher Gruppen. Comment. Math. Helv. 13 (1941), 240–251. MR6546 Zbl 0250410910.1007/BF01378063Search in Google Scholar

[26] F. Kalscheuer, Die Bestimmung aller stetigen Fastkörper über dem Körper der reellen Zahlen als Grundkörper. Abh. Math. Sem. Hansischen Univ. 13 (1940), 413–435. MR1968 Zbl 0250567710.1007/BF02940769Search in Google Scholar

[27] R. Löwen, Vierdimensionale stabile Ebenen. Geom. Dedicata 5 (1976), 239–294. MR428187 Zbl 0344.5000310.1007/BF00145961Search in Google Scholar

[28] R. Löwen, Projectivities and the geometric structure of topological planes. In: Geometry—von Staudt’s point of view Proc. Bad Windsheim, 1980), 339–372, Reidel, Dordrecht-Boston, Mass. 1981. MR621322 Zbl 0458.5101510.1007/978-94-009-8489-9_13Search in Google Scholar

[29] R. Löwen, Homogeneous compact projective planes. J. Reine Angew. Math. 321 (1981), 217–220. MR597992 Zbl 0443.5101210.1515/crll.1981.321.217Search in Google Scholar

[30] R. Löwen, Stable planes with isotropic points. Math. Z. 182 (1983), 49–61. MR686886 Zbl 0506.5101210.1007/BF01162593Search in Google Scholar

[31] R. Löwen, Topology and dimension of stable planes: on a conjecture of H. Freudenthal. J. Reine Angew. Math. 343 (1983), 108–122. MR705880 Zbl 0524.5701110.1515/crll.1983.343.108Search in Google Scholar

[32] M. Lüneburg, Involutionen, auflösbare Gruppen und die Klassifikation topologischer Ebenen. Mitt. Math. Sem. Giessen no. 209 (1992), 113 pages. MR1180698 Zbl 0764.51013Search in Google Scholar

[33] A. Kolmogoroff, Zur Begründung der projektiven Geometrie. Ann. of Math. (2) 33 (1932), 175–176. MR1503044 Zbl 0255088310.2307/1968111Search in Google Scholar

[34] P. Maier, M. Stroppel, Pseudo-homogeneous coordinates for Hughes planes. Canad. Math. Bull. 39 (1996), 330–345. MR1411076 Zbl 0863.5100410.4153/CMB-1996-040-9Search in Google Scholar

[35] L. N. Mann, Dimensions of compact transformation groups. Michigan Math. J. 14 (1967), 433–444. MR220864 Zbl 0312.5703010.1307/mmj/1028999845Search in Google Scholar

[36] D. Montgomery, Simply connected homogeneous spaces. Proc. Amer. Math. Soc. 1 (1950), 467–469. MR37311 Zbl 0041.3630910.1090/S0002-9939-1950-0037311-6Search in Google Scholar

[37] D. Montgomery, L. Zippin, Topological transformation groups. Interscience Publ. 1955. MR0073104 Zbl 0068.01904Search in Google Scholar

[38] M. H. A. Newman, A theorem on periodic transformations of spaces. Quart. J. Math. Oxford 2 (1931), 1–8. Zbl 0001.2270310.1093/qmath/os-2.1.1-aSearch in Google Scholar

[39] K. Niemann, Geometrie und Topologie der sechzehndimensionalen Moufang–Hughes-Ebenen. Staatsexamensarbeit, Universität Kiel, 1990.Search in Google Scholar

[40] G. Pickert, Projektive Ebenen. Springer 1955. MR0073211 Zbl 0066.3870710.1007/978-3-662-00110-3Search in Google Scholar

[41] P. Plaumann, K. Strambach, Zusammenhängende Quasikörper mit Zentrum. Arch. Math. Basel) 21 (1970), 455–465. MR277575 Zbl 0215.3880110.1007/BF01220946Search in Google Scholar

[42] P. Plaumann, K. Strambach, Hurwitzsche Ternärkörper. Arch. Math. Basel) 25 (1974), 129–134. MR346083 Zbl 0284.5000910.1007/BF01238652Search in Google Scholar

[43] J. Poncet, Groupes de Lie compacts de transformations de l’espace euclidien et les sphères comme espaces homogènes. Comment. Math. Helv. 33 (1959), 109–120. MR103946 Zbl 0084.1900610.1007/BF02565911Search in Google Scholar

[44] B. Polster, G. Steinke, Geometries on surfaces, volume 84 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 2001. MR1889925 Zbl 0995.5100410.1017/CBO9780511549656Search in Google Scholar

[45] L. Pontrjagin, Über stetige algebraische Körper. Ann. of Math. (2) 33 (1932), 163–174. MR1503043 Zbl 0254937110.2307/1968110Search in Google Scholar

[46] B. Priwitzer, Large automorphism groups of 8-dimensional projective planes are Lie groups. Geom. Dedicata 52 (1994), 33–40. MR1296144 Zbl 0810.5100310.1007/BF01263522Search in Google Scholar

[47] R. W. Richardson, Jr., Groups acting on the 4-sphere. Illinois J. Math. 5 (1961), 474–485. MR142681 Zbl 0099.3910510.1215/ijm/1255630892Search in Google Scholar

[48] H. Salzmann, K. Zeller, Singularitäten unendlich oft differenzierbarer Funktionen. Math. Z. 62 (1955), 354–367. MR71479 Zbl 0064.2990310.1007/BF01180644Search in Google Scholar

[49] H. Salzmann, Über den Zusammenhang in topologischen projektiven Ebenen. Math. Z. 61 (1955), 489–494. MR68206 Zbl 0064.1780210.1007/BF01181361Search in Google Scholar

[50] H. Salzmann, Topologische projektive Ebenen. Math. Z. 67 (1957), 436–466. MR104193 Zbl 0078.3410310.1007/BF01258875Search in Google Scholar

[51] H. Salzmann, Kompakte zweidimensionale projektive Ebenen. Arch. Math. Basel) 9 (1958), 447–454. MR132449 Zbl 0082.3580210.1007/BF01898629Search in Google Scholar

[52] H. Salzmann, Homomorphismen topologischer projektiver Ebenen. Arch. Math. 10 (1959), 51–55. MR132450 Zbl 0084.3710210.1007/BF01240760Search in Google Scholar

[53] H. Salzmann, Topologische Struktur zweidimensionaler projektiver Ebenen. Math. Z. 71 (1959), 408–413. MR139992 Zbl 0092.3840210.1007/BF01181412Search in Google Scholar

[54] H. Salzmann, Viereckstransitivität der kleinen projektiven Gruppe einer Moufang-Ebene. Illinois J. Math. 3 (1959), 174–181. MR105053 Zbl 0085.1420310.1215/ijm/1255455119Search in Google Scholar

[55] H. Salzmann, Kompakte zweidimensionale projektive Ebenen. Math. Ann. 145 (1961/62), 401–428. MR139069 Zbl 0103.1350310.1007/BF01471086Search in Google Scholar

[56] H. Salzmann, Topologische projektive Ebenen. In: Algebraical and Topological Foundations of Geometry Proc. Colloq., Utrecht, 1959), 157–163, Pergamon, Oxford 1962. MR0139068 Zbl 0123.1330810.1016/B978-0-08-009610-0.50023-1Search in Google Scholar

[57] H. Salzmann, Kompakte Ebenen mit einfacher Kollineationsgruppe. Arch. Math. 13 (1962), 98–109. MR143101 Zbl 0105.1320110.1007/BF01650053Search in Google Scholar

[58] H. Salzmann, Characterization of the three classical plane geometries. Illinois J. Math. 7 (1963), 543–547. MR156256 Zbl 0188.2450110.1215/ijm/1255645092Search in Google Scholar

[59] H. Salzmann, Zur Klassifikation topologischer Ebenen. Math. Ann. 150 (1963), 226–241. MR151941 Zbl 0135.3920110.1007/BF01396992Search in Google Scholar

[60] H. Salzmann, Zur Klassifikation topologischer Ebenen. II. Abh. Math. Sem. Univ. Hamburg 27 (1964), 145–166. MR166675 Zbl 0135.3920110.1007/BF02993212Search in Google Scholar

[61] H. Salzmann, Zur Klassifikation topologischer Ebenen. III. Abh. Math. Sem. Univ. Hamburg 28 (1965), 250–261. MR185505 Zbl 0167.4900110.1007/BF02993254Search in Google Scholar

[62] H. Busemann, H. Salzmann, Metric collineations and inverse problems. Math. Z. 87 (1965), 214–240. MR177378 Zbl 0125.1110210.1007/BF01109941Search in Google Scholar

[63] H. Salzmann, Polaritäten von Moulton-Ebenen. Abh. Math. Sem. Univ. Hamburg 29 (1966), 212–216. MR199773 Zbl 0139.3780410.1007/BF03016049Search in Google Scholar

[64] H. Salzmann, Kollineationsgruppen ebener Geometrien. Math. Z. 99 (1967), 1–15. MR212671 Zbl 0146.4160410.1007/BF01118683Search in Google Scholar

[65] H. R. Salzmann, Topological planes. Advances in Math. 2 (1967), 1–60. MR220135 Zbl 0153.2160110.1016/S0001-8708(67)80002-1Search in Google Scholar

[66] H. Salzmann, Topological geometries. In: Proc. Projective Geometry Conf. Univ. Illinois 1967, 119–120. MR0220557 Zbl 0167.49101Search in Google Scholar

[67] H. Salzmann, Geometries on surfaces. Pacific J. Math. 29 (1969), 397–402. MR248855 Zbl 0181.2330110.2140/pjm.1969.29.397Search in Google Scholar

[68] H. Salzmann, Kompakte vier-dimensionale Ebenen. Arch. Math. Basel) 20 (1969), 551–555. MR253145 Zbl 0189.2080110.1007/BF01899463Search in Google Scholar

[69] H. Salzmann, Homomorphismen komplexer Ternärkörper. Math. Z. 112 (1969), 23–25. MR250186 Zbl 0176.1760110.1007/BF01277491Search in Google Scholar

[70] H. Salzmann, Kollineationsgruppen kompakter, vier-dimensionaler Ebenen. Math. Z. 117 (1970), 112–124. MR279688 Zbl 0205.5010410.1007/BF01109833Search in Google Scholar

[71] H. Salzmann, Kollineationsgruppen kompakter 4-dimensionaler Ebenen. II. Math. Z. 121 (1971), 104–110. MR284913 Zbl 0218.5000910.1007/BF01113480Search in Google Scholar

[72] H. Salzmann, Zahlbereiche. Teil I: Die reellen Zahlen. Universität Tübingen, 1971. Zbl 0257.12101Search in Google Scholar

[73] H. Salzmann, 4-dimensional projective planes of Lenz type III. Geom. Dedicata 1 (1972), 18–20. MR313939 Zbl 0255.5001310.1007/BF00147377Search in Google Scholar

[74] H. Salzmann, Homogene 4-dimensionale affine Ebenen. Math. Ann. 196 (1972), 320–322. MR301631 Zbl 0221.5000810.1007/BF01428220Search in Google Scholar

[75] H. Salzmann, Baer-Unterebenen 4-dimensionaler Ebenen. Arch. Math. Basel) 23 (1972), 337–341. MR319042 Zbl 0245.5002610.1007/BF01304891Search in Google Scholar

[76] H. Salzmann, Elations in four-dimensional planes. General Topology and Appl. 3 (1973), 121–124. MR326569 Zbl 0258.5002310.1016/0016-660X(73)90013-5Search in Google Scholar

[77] H. Salzmann, Kompakte, vier-dimensionale projektive Ebenen mit 8-dimensionaler Kollineationsgruppe. Math. Z. 130 (1973), 235–247. MR326570 Zbl 0239.5001410.1007/BF01246621Search in Google Scholar

[78] H. Salzmann, Zahlbereiche. Teil II: Die rationalen Zahlen. Teil III: Die komplexen Zahlen. Universität Tübingen, 1973. Zbl 0286.12101Search in Google Scholar

[79] H. Salzmann, Reelle Kollineationen der komplexen projektiven Ebene. Geom. Dedicata 1 (1973), 344–348. MR317163 Zbl 0253.5001110.1007/BF00147768Search in Google Scholar

[80] H. Salzmann, In memoriam: Peter Dembowski. In: Proceedings of the International Conference on Projective Planes Washington State Univ., Pullman, Wash., 1973), 1–6, 1973. MR0354282 Zbl 0269.01011Search in Google Scholar

[81] H. Salzmann, Compact planes of Lenz type III. Geom. Dedicata 3 (1974), 399–403. MR367797 Zbl 0288.5002810.1007/BF00181330Search in Google Scholar

[82] H. Salzmann, Homogene kompakte projektive Ebenen. Pacific J. Math. 60 (1975), 217–234. MR400043 Zbl 0323.5000910.2140/pjm.1975.60.217Search in Google Scholar

[83] H. Salzmann, Homogene affine Ebenen. Abh. Math. Sem. Univ. Hamburg 43 (1975), 216–220. MR380620 Zbl 0307.5002210.1007/BF02995952Search in Google Scholar

[84] H. Salzmann, Zur nicht-euklidischen Geometrie. Abh. Braunschweig. Wiss. Ges. 27 (1977), 119. MR497718 Zbl 0397.51005Search in Google Scholar

[85] H. Salzmann, Compact 8-dimensional projective planes with large collineation groups. Geom. Dedicata 8 (1979), 139–161. MR538522 Zbl 0465.5100310.1007/BF00181484Search in Google Scholar

[86] H. Salzmann, Automorphismengruppen 8-dimensionaler Ternärkörper. Math. Z. 166 (1979), 265–275. MR526467 Zbl 0406.5101310.1007/BF01214146Search in Google Scholar

[87] H. Salzmann, Kompakte, 8-dimensionale projektive Ebenen mit großer Kollineationsgruppe. Math. Z. 176 (1981), 345–357. MR610215 Zbl 0465.5100410.1007/BF01214611Search in Google Scholar

[88] H. Salzmann, Projectivities and the topology of lines. In: Geometry—von Staudt’s point of view Proc. Bad Windsheim, 1980), 313–337, Reidel, Dordrecht-Boston, Mass. 1981. MR621321 Zbl 0462.5101210.1007/978-94-009-8489-9_12Search in Google Scholar

[89] H. Salzmann, Baer-Kollineationsgruppen der klassischen projektiven Ebenen. Arch. Math. Basel) 38 (1982), 374–377. MR658385 Zbl 0496.5100510.1007/BF01304802Search in Google Scholar

[90] H. Salzmann, Compact 16-dimensional projective planes with large collineation groups. Math. Ann. 261 (1982), 447–454. MR682656 Zbl 0497.5101510.1007/BF01457446Search in Google Scholar

[91] R. Löwen, H. Salzmann, Collineation groups of compact connected projective planes. Arch. Math. Basel) 38 (1982), 368–373. MR658384 Zbl 0498.5101410.1007/BF01304801Search in Google Scholar

[92] H. Salzmann, Compact 16-dimensional projective planes with large collineation groups. II. Monatsh. Math. 95 (1983), 311–319. MR718066 Zbl 0507.5100910.1007/BF01547801Search in Google Scholar

[93] H. Salzmann, Compact 16-dimensional projective planes with large collineation groups. III. Math. Z. 185 (1984), 185–190. MR731339 Zbl 0544.5101210.1007/BF01181689Search in Google Scholar

[94] H. Salzmann, Homogeneous translation groups. Arch. Math. Basel) 44 (1985), 95–96. MR778998 Zbl 0559.5100710.1007/BF01193787Search in Google Scholar

[95] H. Salzmann, Compact 16-dimensional projective planes with large collineation groups. IV. Canad. J. Math. 39 (1987), 908–919. MR915022 Zbl 0641.5100610.4153/CJM-1987-045-4Search in Google Scholar

[96] H. Salzmann, Compact 8-dimensional projective planes. Forum Math. 2 (1990), 15–34. MR1030624 Zbl 0684.5101210.1515/form.1990.2.15Search in Google Scholar

[97] T. Grundhöfer, H. Salzmann, Locally compact double loops and ternary fields. In: Quasigroups and loops: theory and applications, volume 8 of Sigma Ser. Pure Math., 313–355, Heldermann, Berlin 1990. MR1125817 Zbl 0749.51016Search in Google Scholar

[98] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, M. Stroppel, Compact projective planes, volume 21 of De Gruyter Expositions in Mathematics. De Gruyter 1995. MR1384300 Zbl 0851.5100310.1515/9783110876833Search in Google Scholar

[99] H. Salzmann, Characterization of 16-dimensional Hughes planes. Arch. Math. Basel) 71 (1998), 249–256. MR1637394 Zbl 0926.5101610.1007/s000130050261Search in Google Scholar

[100] B. Priwitzer, H. Salzmann, Large automorphism groups of 16-dimensional planes are Lie groups. J. Lie Theory 8 (1998), 83–93. MR1616782 Zbl 0902.51012Search in Google Scholar

[101] H. Salzmann, Compact 16-dimensional projective planes. Results Math. 35 (1999), 192–196. MR1678123 Zbl 0933.5100810.1007/BF03322032Search in Google Scholar

[102] H. Salzmann, Large automorphism groups of 16-dimensional planes are Lie groups. II. J. Lie Theory 9 (1999), 481–486. MR1718234 Zbl 1014.51007Search in Google Scholar

[103] H. Salzmann, On the classification of 16-dimensional planes. Beiträge Algebra Geom. 41 (2000), 557–568. MR1801443 Zbl 0980.51012Search in Google Scholar

[104] H. Salzmann, Near-homogeneous 16-dimensional planes. Adv. Geom. 1 (2001), 145–155. MR1840218 Zbl 1002.5101110.1515/advg.2001.010Search in Google Scholar

[105] H. Salzmann, Baer subplanes. Illinois J. Math. 47 (2003), 485–513. MR2031336 Zbl 1036.5100210.1215/ijm/1258488168Search in Google Scholar

[106] H. Salzmann, 16-dimensional compact projective planes with 3 fixed points. Adv. Geom. 2003, special issue, S153–S157. MR2028394 Zbl 1043.5101110.1515/advg.2003.2003.s1.153Search in Google Scholar

[107] H. Hähl, H. Salzmann, 16-dimensional compact projective planes with a large group fixing two points and two lines. Arch. Math. Basel) 85 (2005), 89–100. MR2155114 Zbl 1077.5100310.1007/s00013-004-1019-xSearch in Google Scholar

[108] H. Salzmann, T. Grundhöfer, H. Hähl, R. Löwen, The classical fields, volume 112 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 2007. MR2357231 Zbl 1173.0000610.1017/CBO9780511721502Search in Google Scholar

[109] H. Salzmann, 16-dimensional compact projective planes with a collineation group of dimension ≥ 35. Arch. Math. Basel) 90 (2008), 284–288. MR2391364 Zbl 1155.5100710.1007/s00013-007-2466-ySearch in Google Scholar

[110] H. R. Salzmann, Classification of 8-dimensional compact projective planes. J. Lie Theory 20 (2010), 689–708. MR2778232 Zbl 1228.51012Search in Google Scholar

[111] H. Hähl, H. Salzmann, 16-dimensional compact projective planes with a large group fixing two points and only one line. Innov. Incidence Geom. 11 (2010), 213–235. MR2795064 Zbl 1263.5100910.2140/iig.2010.11.213Search in Google Scholar

[112] H. R. Salzmann, 8-dimensional compact planes with an automorphism group which has a normal vector subgroup. J. Lie Theory 24 (2014), 123–146. MR3186331 Zbl 1296.51015Search in Google Scholar

[113] H. R. Salzmann, Reminiszenzen an Günter Pickert. J. Geom. 107 (2016), 221–224. MR3519944 Zbl 1354.0103210.1007/s00022-015-0285-zSearch in Google Scholar

[114] H. R. Salzmann, Semi-simple groups of compact 16-dimensional planes. J. Geom. 107 (2016), 249–255. MR3519946 Zbl 1371.5100410.1007/s00022-015-0295-xSearch in Google Scholar

[115] H. R. Salzmann, Groups of compact 8-dimensional planes: conditions implying the Lie property. Innov. Incidence Geom. 17 (2019), 201–220. MR4016626 Zbl 1428.2200610.2140/iig.2019.17.201Search in Google Scholar

[116] H. Salzmann, Compact planes, mostly 8-dimensional. A retrospect (2014). arXiv:1402.0304 [math.GT]Search in Google Scholar

[117] H. Salzmann, Compact 16-dimensional planes. An update (2017). arXiv:1706.03696 [math.GT]Search in Google Scholar

[118] H.-P. Seidel, Locally homogeneous ANR-spaces. Arch. Math. Basel) 44 (1985), 79–81. MR778995 Zbl 0532.5401510.1007/BF01193784Search in Google Scholar

[119] L. A. Skornyakov, Topological projective planes (Russian). Trudy Moskov. Mat. Obšč. 3 (1954), 347–373. MR0063026 Zbl 0057.36201Search in Google Scholar

[120] L. A. Skornyakov, Systems of curves on a plane (Russian). Trudy Moskov Mat. Obšč. 6 (1957), 135–164. MR0065149 Zbl 0081.17101Search in Google Scholar

[121] G. F. Steinke, Topological circle geometries. In: Handbook of incidence geometry, 1325–1354, North-Holland 1995. MR1360739 Zbl 0824.5101210.1016/B978-044488355-1/50026-8Search in Google Scholar

[122] M. Stroppel, Stable planes with large groups of automorphisms: the interplay of incidence, topology, and homogeneity. Habilitationsschrift, Darmstadt 1993.Search in Google Scholar

[123] M. Stroppel, Lie theory for non-Lie groups. J. Lie Theory 4 (1994), 257–284. MR1337193 Zbl 0834.22009Search in Google Scholar

[124] J. Szenthe, On the topological characterization of transitive Lie group actions. Acta Sci. Math. Szeged) 36 (1974), 323–344. MR360921 Zbl 0269.57019Search in Google Scholar

[125] J. Tits, Sur les groupes doublement transitifs continus. Comment. Math. Helv. 26 (1952), 203–224. MR51238 Zbl 0047.2600210.1007/BF02564302Search in Google Scholar

[126] J. Tits, Sur certaines classes d’espaces homogènes de groupes de Lie. Acad. Roy. Belg. Cl. Sci. Mém. Coll. in 8 29 (1955), 268. MR76286 Zbl 0067.12301Search in Google Scholar

[127] J. Tits, Sur les groupes doublement transitifs continus: correction et compléments. Comment. Math. Helv. 30 (1956), 234–240. MR77880 Zbl 0070.0250510.1007/BF02564343Search in Google Scholar

Received: 2022-08-20
Published Online: 2022-10-19
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.2.2024 from https://www.degruyter.com/document/doi/10.1515/advgeom-2022-0023/html
Scroll to top button