Abstract
In this note we prove that on metric measure spaces, functions of least gradient, as well as local minimizers of the area functional (after modification on a set of measure zero) are continuous everywhere outside their jump sets. As a tool, we develop some stability properties of sequences of least gradient functions. We also apply these tools to prove a maximum principle for functions of least gradient that arise as solutions to a Dirichlet problem.
References
[1] F. J. Almgren, Jr., Almgren’s big regularity paper, Q-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2. With a preface by Jean E. Taylor and Vladimir Scheffer. World Scientific Monograph Series in Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 2000. xvi+955 pp. Search in Google Scholar
[2] L. Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math. 159 (2001), no. 1, 51–67. Search in Google Scholar
[3] L. Ambrosio, Fine properties of sets of finite perimeter in doubling metric measure spaces, Calculus of variations, nonsmooth analysis and related topics. Set-Valued Anal. 10 (2002), no. 2-3, 111–128. Search in Google Scholar
[4] L. Ambrosio and S. Di Marino, Equivalent definitions of BV space and of total variation on metric measure spaces, J. Funct. Anal. 266 (2014), no. 7, 4150–4188. Search in Google Scholar
[5] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems,OxfordMathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. Search in Google Scholar
[6] L. Ambrosio, M. Miranda, Jr., and D. Pallara, Special functions of bounded variation in doubling metric measure spaces, Calculus of variations: topics from the mathematical heritage of E. De Giorgi, 1–45, Quad. Mat., 14, Dept. Math., Seconda Univ. Napoli, Caserta, 2004. Search in Google Scholar
[7] L. Ambrosio, A. Pinamonti, and G. Speight, Tensorization of Cheeger energies, the space H1,1 and the area formula for graphs, preprint 2014. 10.1016/j.aim.2015.06.004Search in Google Scholar
[8] A. Björn and J. Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zürich, 2011. xii+403 pp. 10.4171/099Search in Google Scholar
[9] E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243–268. 10.1007/BF01404309Search in Google Scholar
[10] C. Camfield, Comparison of BV norms in weighted Euclidean spaces and metric measure spaces, Thesis (Ph.D.)–University of Cincinnati (2008), 141 pp. Search in Google Scholar
[11] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. Search in Google Scholar
[12] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions Studies in AdvancedMathematics series, CRC Press, Boca Raton, 1992. Search in Google Scholar
[13] E. Giusti,Minimal surfaces and functions of bounded variation, Monographs inMathematics, 80. Birkhäuser Verlag, Basel, 1984. xii+240 pp. 10.1007/978-1-4684-9486-0Search in Google Scholar
[14] P. Hajłasz, Sobolev spaces on metric-measure spaces, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 173–218, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003. 10.1090/conm/338/06074Search in Google Scholar
[15] H. Hakkarainen, J. Kinnunen, and P. Lahti, Regularity of minimizers of the area functional in metric spaces, Adv. Calc. Var. 8 (2015), no. 1, 55–68. Search in Google Scholar
[16] H. Hakkarainen, J. Kinnunen, P. Lahti, and P. Lehtelä, Relaxation and integral representation for functionals of linear growth on metric measure spaces, submitted. Search in Google Scholar
[17] J. Heinonen, Lectures on analysis on metric spaces, Universitext. Springer-Verlag, New York, 2001. x+140 pp. 10.1007/978-1-4613-0131-8Search in Google Scholar
[18] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006. xii+404 pp. Search in Google Scholar
[19] J. Kinnunen and N. Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), 401–423. 10.1007/s002290100193Search in Google Scholar
[20] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, The DeGiorgi measure and an obstacle problem related to minimal surfaces in metric spaces, J. Math. Pures Appl. 93 (2010), 599–622. 10.1016/j.matpur.2009.10.006Search in Google Scholar
[21] J. Kinnunen, R. Korte, A. Lorent, and N. Shanmugalingam, Regularity of sets with quasiminimal boundary surfaces in metric spaces, J. Geom. Anal. 23 (2013), 1607–1640. 10.1007/s12220-012-9299-zSearch in Google Scholar
[22] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, Lebesgue points and capacities via the boxing inequality in metric spaces, Indiana Univ. Math. J. 57 (2008), no. 1, 401–430. Search in Google Scholar
[23] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, Pointwise properties of functions of bounded variation on metric spaces, Rev. Mat. Complut. 27 (2014), no. 1, 41–67. Search in Google Scholar
[24] F. Maggi, Sets of finite perimeter and geometric variational problems, An introduction to geometric measure theory. Cambridge Studies in Advanced Mathematics, 135. Cambridge University Press, Cambridge, 2012. xx+454 pp. 10.1017/CBO9781139108133Search in Google Scholar
[25] U. Massari and M. Miranda, Sr., Minimal surfaces of codimension one, North-Holland Mathematics Studies, 91. Notas de Matemática [Mathematical Notes], 95, North-Holland Publishing Co., Amsterdam, 1984. xiii+243 pp. Search in Google Scholar
[26] M. Miranda, Sr., Comportamento delle successioni convergenti di frontiere minimali, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238–257. Search in Google Scholar
[27] M. Miranda, Jr., Functions of bounded variation on “good” metric spaces, J.Math. Pures Appl. (9) 82 (2003), no. 8, 975–1004. Search in Google Scholar
[28] H. Parks, Explicit determination of area minimizing hypersurfaces, Duke Math. J. 44 (1977), no. 3, 519–534. Search in Google Scholar
[29] H. Parks, Explicit determination of area minimizing hypersurfaces. II, Mem. Amer. Math. Soc. 60 (1986), no. 342, iv+90 pp. 10.1090/memo/0342Search in Google Scholar
[30] E. R. Reifenberg, Solution of the Plateau Problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1–92. 10.1007/BF02547186Search in Google Scholar
[31] N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev.Mat. Iberoamericana 16 (2000), no. 2, 243–279. Search in Google Scholar
[32] J. Simons, Minimal cones, Plateau’s problem, and the Bernstein conjecture, Proc. Nat. Acad. Sci. U.S.A. 58 (1967), 410–411. 10.1073/pnas.58.2.410Search in Google Scholar PubMed PubMed Central
[33] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. 10.2307/1970556Search in Google Scholar
[34] E. Soultanis, Homotopy classes of Newtonian spaces, preprint http://lanl.arxiv.org/pdf/1309.6472.pdf. Search in Google Scholar
[35] P. Sternberg, G. Williams, and W. P. Ziemer, Existence, uniqueness, and regularity for functions of least gradient, J. Reine Angew. Math. 430 (1992), 35–60. Search in Google Scholar
[36] W. P. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. 10.1007/978-1-4612-1015-3Search in Google Scholar
[37] W. P. Ziemer, Functions of least gradient and BV functions, Nonlinear analysis, function spaces and applications, Vol. 6 (Prague, 1998), 270–312, Acad. Sci. Czech Repub., Prague, 1999. Search in Google Scholar
© 2015 H. Hakkarainen et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.