Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 15, 2015

Stability and Continuity of Functions of Least Gradient

  • H. Hakkarainen , R. Korte , P. Lahti and N. Shanmugalingam

Abstract

In this note we prove that on metric measure spaces, functions of least gradient, as well as local minimizers of the area functional (after modification on a set of measure zero) are continuous everywhere outside their jump sets. As a tool, we develop some stability properties of sequences of least gradient functions. We also apply these tools to prove a maximum principle for functions of least gradient that arise as solutions to a Dirichlet problem.

References

[1] F. J. Almgren, Jr., Almgren’s big regularity paper, Q-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2. With a preface by Jean E. Taylor and Vladimir Scheffer. World Scientific Monograph Series in Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 2000. xvi+955 pp. Search in Google Scholar

[2] L. Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math. 159 (2001), no. 1, 51–67. Search in Google Scholar

[3] L. Ambrosio, Fine properties of sets of finite perimeter in doubling metric measure spaces, Calculus of variations, nonsmooth analysis and related topics. Set-Valued Anal. 10 (2002), no. 2-3, 111–128. Search in Google Scholar

[4] L. Ambrosio and S. Di Marino, Equivalent definitions of BV space and of total variation on metric measure spaces, J. Funct. Anal. 266 (2014), no. 7, 4150–4188. Search in Google Scholar

[5] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems,OxfordMathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. Search in Google Scholar

[6] L. Ambrosio, M. Miranda, Jr., and D. Pallara, Special functions of bounded variation in doubling metric measure spaces, Calculus of variations: topics from the mathematical heritage of E. De Giorgi, 1–45, Quad. Mat., 14, Dept. Math., Seconda Univ. Napoli, Caserta, 2004. Search in Google Scholar

[7] L. Ambrosio, A. Pinamonti, and G. Speight, Tensorization of Cheeger energies, the space H1,1 and the area formula for graphs, preprint 2014. 10.1016/j.aim.2015.06.004Search in Google Scholar

[8] A. Björn and J. Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zürich, 2011. xii+403 pp. 10.4171/099Search in Google Scholar

[9] E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243–268. 10.1007/BF01404309Search in Google Scholar

[10] C. Camfield, Comparison of BV norms in weighted Euclidean spaces and metric measure spaces, Thesis (Ph.D.)–University of Cincinnati (2008), 141 pp. Search in Google Scholar

[11] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. Search in Google Scholar

[12] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions Studies in AdvancedMathematics series, CRC Press, Boca Raton, 1992. Search in Google Scholar

[13] E. Giusti,Minimal surfaces and functions of bounded variation, Monographs inMathematics, 80. Birkhäuser Verlag, Basel, 1984. xii+240 pp. 10.1007/978-1-4684-9486-0Search in Google Scholar

[14] P. Hajłasz, Sobolev spaces on metric-measure spaces, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 173–218, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003. 10.1090/conm/338/06074Search in Google Scholar

[15] H. Hakkarainen, J. Kinnunen, and P. Lahti, Regularity of minimizers of the area functional in metric spaces, Adv. Calc. Var. 8 (2015), no. 1, 55–68. Search in Google Scholar

[16] H. Hakkarainen, J. Kinnunen, P. Lahti, and P. Lehtelä, Relaxation and integral representation for functionals of linear growth on metric measure spaces, submitted. Search in Google Scholar

[17] J. Heinonen, Lectures on analysis on metric spaces, Universitext. Springer-Verlag, New York, 2001. x+140 pp. 10.1007/978-1-4613-0131-8Search in Google Scholar

[18] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006. xii+404 pp. Search in Google Scholar

[19] J. Kinnunen and N. Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), 401–423. 10.1007/s002290100193Search in Google Scholar

[20] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, The DeGiorgi measure and an obstacle problem related to minimal surfaces in metric spaces, J. Math. Pures Appl. 93 (2010), 599–622. 10.1016/j.matpur.2009.10.006Search in Google Scholar

[21] J. Kinnunen, R. Korte, A. Lorent, and N. Shanmugalingam, Regularity of sets with quasiminimal boundary surfaces in metric spaces, J. Geom. Anal. 23 (2013), 1607–1640. 10.1007/s12220-012-9299-zSearch in Google Scholar

[22] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, Lebesgue points and capacities via the boxing inequality in metric spaces, Indiana Univ. Math. J. 57 (2008), no. 1, 401–430. Search in Google Scholar

[23] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, Pointwise properties of functions of bounded variation on metric spaces, Rev. Mat. Complut. 27 (2014), no. 1, 41–67. Search in Google Scholar

[24] F. Maggi, Sets of finite perimeter and geometric variational problems, An introduction to geometric measure theory. Cambridge Studies in Advanced Mathematics, 135. Cambridge University Press, Cambridge, 2012. xx+454 pp. 10.1017/CBO9781139108133Search in Google Scholar

[25] U. Massari and M. Miranda, Sr., Minimal surfaces of codimension one, North-Holland Mathematics Studies, 91. Notas de Matemática [Mathematical Notes], 95, North-Holland Publishing Co., Amsterdam, 1984. xiii+243 pp. Search in Google Scholar

[26] M. Miranda, Sr., Comportamento delle successioni convergenti di frontiere minimali, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238–257. Search in Google Scholar

[27] M. Miranda, Jr., Functions of bounded variation on “good” metric spaces, J.Math. Pures Appl. (9) 82 (2003), no. 8, 975–1004. Search in Google Scholar

[28] H. Parks, Explicit determination of area minimizing hypersurfaces, Duke Math. J. 44 (1977), no. 3, 519–534. Search in Google Scholar

[29] H. Parks, Explicit determination of area minimizing hypersurfaces. II, Mem. Amer. Math. Soc. 60 (1986), no. 342, iv+90 pp. 10.1090/memo/0342Search in Google Scholar

[30] E. R. Reifenberg, Solution of the Plateau Problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1–92. 10.1007/BF02547186Search in Google Scholar

[31] N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev.Mat. Iberoamericana 16 (2000), no. 2, 243–279. Search in Google Scholar

[32] J. Simons, Minimal cones, Plateau’s problem, and the Bernstein conjecture, Proc. Nat. Acad. Sci. U.S.A. 58 (1967), 410–411. 10.1073/pnas.58.2.410Search in Google Scholar PubMed PubMed Central

[33] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. 10.2307/1970556Search in Google Scholar

[34] E. Soultanis, Homotopy classes of Newtonian spaces, preprint http://lanl.arxiv.org/pdf/1309.6472.pdf. Search in Google Scholar

[35] P. Sternberg, G. Williams, and W. P. Ziemer, Existence, uniqueness, and regularity for functions of least gradient, J. Reine Angew. Math. 430 (1992), 35–60. Search in Google Scholar

[36] W. P. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. 10.1007/978-1-4612-1015-3Search in Google Scholar

[37] W. P. Ziemer, Functions of least gradient and BV functions, Nonlinear analysis, function spaces and applications, Vol. 6 (Prague, 1998), 270–312, Acad. Sci. Czech Repub., Prague, 1999. Search in Google Scholar

Received: 2014-10-13
Accepted: 2015-5-24
Published Online: 2015-6-15

© 2015 H. Hakkarainen et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.5.2023 from https://www.degruyter.com/document/doi/10.1515/agms-2015-0009/html
Scroll to top button