Abstract
Let f : G → H be a Lipschitz map between two Carnot groups. We show that if B is a ball of G, then there exists a subset Z ⊂ B, whose image in H under f has small Hausdorff content, such that B\Z can be decomposed into a controlled number of pieces, the restriction of f on each of which is quantitatively biLipschitz. This extends a result of [14], which proved the same result, but with the restriction that G has an appropriate discretization. We provide an example of a Carnot group not admitting such a discretization.
References
[1] E. Breuillard. Geometry of locally compact groups of polynomial growth and shape of large balls, 2007. arXiv:0704.0095. Search in Google Scholar
[2] M. Christ. A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq.Math., 60/61(2):601–628, 1990. 10.4064/cm-60-61-2-601-628Search in Google Scholar
[3] G. David. Morceaux de graphes Lipschitziens et intégrales singulières sur un surface. Rev. Mat. Iberoam., 4(1):73–114, 1988. 10.4171/RMI/64Search in Google Scholar
[4] G. David. Wavelets and singular integrals on curves and surfaces, volume 1465 of Lecture Notes in Mathematics. Springer- Verlag, 1991. 10.1007/BFb0091544Search in Google Scholar
[5] G. David and S. Semmes. Quantitative rectifiability and Lipschitz mappings. Trans. Amer. Math. Soc., 337(2):855–889, 1993. 10.1090/S0002-9947-1993-1132876-8Search in Google Scholar
[6] G.C. David. Bi-Lipschitz pieces between manifolds. Rev. Mat. Iberoam. To appear. Search in Google Scholar
[7] Y. Guivarc’h. Croissance polynômiale et périodes des fonctions harmoniques. Bull. Sc. Math. France, 101:353–379, 1973. 10.24033/bsmf.1764Search in Google Scholar
[8] J. Heinonen and S. Semmes. Thirty-three yes or no questions about mappings, measures, and metrics. Conform. Geom. Dyn., 1:1–12, 1997. 10.1090/S1088-4173-97-00012-XSearch in Google Scholar
[9] P. Jones. Lipschitz and bi-Lipschitz functions. Rev. Mat. Iberoam., 4(1):115–121, 1988. 10.4171/RMI/65Search in Google Scholar
[10] E. Le Donne. A metric characterization of Carnot groups. Proc. Amer. Math. Soc., 132:845–849, 2015. 10.1090/S0002-9939-2014-12244-1Search in Google Scholar
[11] E. Le Donne, S. Li, and T. Rajala. Ahlfors-regular distances on the Heisenberg group without biLipschitz pieces, 2015. Preprint. Search in Google Scholar
[12] S. Li. Coarse differentiation and quantitative nonembeddability for Carnot groups. J. Funct. Anal., 266:4616–4704, 2014. 10.1016/j.jfa.2014.01.026Search in Google Scholar
[13] V. Magnani. Differentiability and area formula on stratified Lie groups. Houston J. Math., 27(2):297–323, 2001. Search in Google Scholar
[14] W. Meyerson. Lipschitz and bilipschitz maps on Carnot groups. Pac. J. Math, 263(1):143–170, 2013. 10.2140/pjm.2013.263.143Search in Google Scholar
[15] R. Montgomery. A tour of sub-Riemannian geometries, their geodesics and applications, volume 91 of Mathematical Surveys and Monographs. American Mathematical Society, 2002. Search in Google Scholar
[16] P. Pansu. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann.Math. (2), 129(1):1– 60, 1989. 10.2307/1971484Search in Google Scholar
[17] R. Schul. Ahlfors-regular curves in metric spaces. Ann. Acad. Sci. Fenn. Math., 32:437–460, 2007. Search in Google Scholar
[18] R. Schul. Bi-Lipschitz decomposition of Lipschitz functions into a metric space. Rev. Mat. Iberoam., 25(2):521–531, 2009. 10.4171/RMI/574Search in Google Scholar
© 2015 Sean Li
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.