Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 11, 2016

Combinatorial Modulus on Boundary of Right-Angled Hyperbolic Buildings

  • Antoine Clais

Abstract

In this article, we discuss the quasiconformal structure of boundaries of right-angled hyperbolic buildings using combinatorial tools. In particular, we exhibit some examples of buildings of dimension 3 and 4 whose boundaries satisfy the combinatorial Loewner property. This property is a weak version of the Loewner property. This is motivated by the fact that the quasiconformal structure of the boundary led to many results of rigidity in hyperbolic spaces since G.D.Mostow. In the case of buildings of dimension 2, many work have been done by M. Bourdon and H. Pajot. In particular, the Loewner property on the boundary permitted them to prove the quasi-isometry rigidity of right-angled Fuchsian buildings.

References

[1] Peter Abramenko and Kenneth S. Brown. Buildings, volume 248 of Graduate Texts in Mathematics. Springer, New York, 2008. Theory and applications. 10.1007/978-0-387-78835-7Search in Google Scholar

[2] Mario Bonk and Bruce Kleiner. Quasisymmetric parametrizations of two-dimensional metric spheres. Invent. Math., 150(1):127–183, 2002. 10.1007/s00222-002-0233-zSearch in Google Scholar

[3] Mario Bonk and Bruce Kleiner. Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary. Geom. Topol., 9:219–246, 2005. 10.2140/gt.2005.9.219Search in Google Scholar

[4] Marc Bourdon and Bruce Kleiner. Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups. Groups Geom. Dyn., 7(1):39–107, 2013. 10.4171/GGD/177Search in Google Scholar

[5] M. Bourdon. Immeubles hyperboliques, dimension conforme et rigidité de Mostow. Geom. Funct. Anal., 7(2):245–268, 1997. 10.1007/PL00001619Search in Google Scholar

[6] Brian H. Bowditch. Cut points and canonical splittings of hyperbolic groups. Acta Math., 180(2):145–186, 1998. 10.1007/BF02392898Search in Google Scholar

[7] Marc Bourdon and Hervé Pajot. Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings. Proc. Amer. Math. Soc., 127(8):2315–2324, 1999. 10.1090/S0002-9939-99-04901-1Search in Google Scholar

[8] Marc Bourdon and Hervé Pajot. Rigidity of quasi-isometries for some hyperbolic buildings. Comment. Math. Helv., 75(4):701–736, 2000. 10.1007/s000140050146Search in Google Scholar

[9] James W. Cannon. The combinatorial Riemann mapping theorem. Acta Math., 173(2):155–234, 1994. 10.1007/BF02398434Search in Google Scholar

[10] Pierre-Emmanuel Caprace. Automorphism groups of right-angled buildings: simplicity and local splittings. Fund. Math., 224(1):17–51, 2014. Search in Google Scholar

[11] Matias Carrasco. Thése de doctorat : Jauge conforme des espaces métrique compacts. Université de Provence, 2011. Search in Google Scholar

[12] M. Coornaert, T. Delzant, and A. Papadopoulos. Géométrie et théorie des groupes, volume 1441 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1990. Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups],With an English summary. 10.1007/BFb0084913Search in Google Scholar

[13] Ruth Charney. An introduction to right-angled Artin groups. Geom. Dedicata, 125:141–158, 2007. 10.1007/s10711-007-9148-6Search in Google Scholar

[14] A. Clais. Parallel residues in buildings admitting a group action. Pre-print arXiv:1312.5541, 2013. Search in Google Scholar

[15] H. S. M. Coxeter. Regular polytopes. Dover Publications, Inc., New York, third edition, 1973. Search in Google Scholar

[16] J. W. Cannon and E. L. Swenson. Recognizing constant curvature discrete groups in dimension 3. Trans. Amer. Math. Soc., 350(2):809–849, 1998. 10.1090/S0002-9947-98-02107-2Search in Google Scholar

[17] Michael W. Davis. A hyperbolic 4-manifold. Proc. Amer. Math. Soc., 93(2):325–328, 1985. 10.1090/S0002-9939-1985-0770546-7Search in Google Scholar

[18] MichaelW. Davis. Buildings are CAT(0). In Geometry and cohomology in group theory (Durham, 1994), volume252 of London Math. Soc. Lecture Note Ser., pages 108–123. Cambridge Univ. Press, Cambridge, 1998. 10.1017/CBO9780511666131.009Search in Google Scholar

[19] Michael W. Davis. The geometry and topology of Coxeter groups, volume 32 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2008. Search in Google Scholar

[20] MichaelW. Davis and John Meier. The topology at infinity of Coxeter groups and buildings. Comment.Math. Helv., 77(4):746– 766, 2002. 10.1007/PL00012440Search in Google Scholar

[21] Jan Dymara and Damian Osajda. Boundaries of right-angled hyperbolic buildings. Fund. Math., 197:123–165, 2007. 10.4064/fm197-0-6Search in Google Scholar

[22] Étienne Ghys and Pierre de la Harpe. Espaces métriques hyperboliques. In Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), volume 83 of Progr. Math., pages 27–45. Birkhäuser Boston, Boston, MA, 1990. 10.1007/978-1-4684-9167-8_2Search in Google Scholar

[23] Damien Gaboriau and Frédéric Paulin. Sur les immeubles hyperboliques. Geom. Dedicata, 88(1-3):153–197, 2001. 10.1023/A:1013168623727Search in Google Scholar

[24] Peter Haïssinsky. Empilements de cercles et modules combinatoires. Ann. Inst. Fourier (Grenoble), 59(6):2175–2222, 2009. 10.5802/aif.2488Search in Google Scholar

[25] Peter Haïssinsky. Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités [d’après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner. . .]. Astérisque, (326):Exp. No. 993, ix, 321–362 (2010), 2009. Séminaire Bourbaki. Vol. 2007/2008. Search in Google Scholar

[26] Juha Heinonen. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001. 10.1007/978-1-4613-0131-8Search in Google Scholar

[27] Juha Heinonen and Pekka Koskela. Quasiconformal maps in metric spaces with controlled geometry. Acta Math., 181(1):1– 61, 1998. 10.1007/BF02392747Search in Google Scholar

[28] Frédéric Haglund and Frédéric Paulin. Constructions arborescentes d’immeubles. Math. Ann., 325(1):137–164, 2003. 10.1007/s00208-002-0373-xSearch in Google Scholar

[29] Ilya Kapovich and Nadia Benakli. Boundaries of hyperbolic groups. In Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), volume 296 of Contemp. Math., pages 39–93. Amer. Math. Soc., Providence, RI, 2002. 10.1090/conm/296/05068Search in Google Scholar

[30] Stephen Keith and Bruce Kleiner. In preparation. Search in Google Scholar

[31] S. Keith and T. Laakso. Conformal Assouad dimension and modulus. Geom. Funct. Anal., 14(6):1278–1321, 2004. 10.1007/s00039-004-0492-5Search in Google Scholar

[32] Bruce Kleiner. The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity. In International Congress of Mathematicians. Vol. II, pages 743–768. Eur. Math. Soc., Zürich, 2006. 10.4171/022-2/36Search in Google Scholar

[33] Charles Loewner. On the conformal capacity in space. J. Math. Mech., 8:411–414, 1959. 10.1512/iumj.1959.8.58029Search in Google Scholar

[34] John Meier. When is the graph product of hyperbolic groups hyperbolic? Geom. Dedicata, 61(1):29–41, 1996. 10.1007/BF00149417Search in Google Scholar

[35] John M.Mackay and Jeremy T. Tyson. Conformal dimension, volume 54 of University Lecture Series. AmericanMathematical Society, Providence, RI, 2010. Theory and application. Search in Google Scholar

[36] James R. Munkres. Topology: a first course. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975. Search in Google Scholar

[37] Pierre Pansu. Dimension conforme et sphère à l’infini des variétés à courbure négative. Ann. Acad. Sci. Fenn. Ser. A IMath., 14(2):177–212, 1989. 10.5186/aasfm.1989.1424Search in Google Scholar

[38] Mark Ronan. Lectures on buildings, volume 7 of Perspectives in Mathematics. Academic Press, Inc., Boston, MA, 1989. Search in Google Scholar

[39] Dennis Sullivan. Discrete conformal groups and measurable dynamics. Bull. Amer. Math. Soc. (N.S.), 6(1):57–73, 1982. 10.1090/S0273-0979-1982-14966-7Search in Google Scholar

[40] Jacques Tits. Buildings of spherical type and finite BN-pairs. Lecture Notes in Mathematics, Vol. 386. Springer-Verlag, Berlin-New York, 1974. Search in Google Scholar

[41] Jeremy Tyson. Quasiconformality and quasisymmetry in metricmeasure spaces. Ann. Acad. Sci. Fenn.Math., 23(2):525–548, 1998. Search in Google Scholar

[42] Jussi Väisälä. Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics, Vol. 229. Springer- Verlag, Berlin-New York, 1971. 10.1007/BFb0061216Search in Google Scholar

[43] Jussi Väisälä. Quasi-Möbius maps. J. Analyse Math., 44:218–234, 1984/85. 10.1007/BF02790198Search in Google Scholar

[44] Matti Vuorinen. Conformal geometry and quasiregular mappings, volume 1319 of Lecture Notes in Mathematics. Springer- Verlag, Berlin, 1988. 10.1007/BFb0077904Search in Google Scholar

Received: 2015-3-31
Accepted: 2016-1-16
Published Online: 2016-2-11

© 2016 Antoine Clais

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 7.12.2023 from https://www.degruyter.com/document/doi/10.1515/agms-2016-0001/html
Scroll to top button