Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 11, 2016

Weak Chord-Arc Curves and Double-Dome Quasisymmetric Spheres

  • Vyron Vellis

Abstract

Let Ω be a planar Jordan domain and α > 0. We consider double-dome-like surfaces Σ(Ω, tα) over Ω where the height of the surface over any point x ∈ Ωequals dist(x, ∂Ω)α. We identify the necessary and sufficient conditions in terms of and α so that these surfaces are quasisymmetric to S2 and we show that Σ(Ω, tα) is quasisymmetric to the unit sphere S2 if and only if it is linearly locally connected and Ahlfors 2-regular.

References

[1] L. V. Ahlfors. Quasiconformal reflections. Acta Math., 109:291–301, 1963. 10.1007/BF02391816Search in Google Scholar

[2] P. Assouad. Étude d’une dimension métrique liée à la possibilité de plongements dans Rn. C. R. Acad. Sci. Paris Sér. A-B, 288(15):A731–A734, 1979. Search in Google Scholar

[3] C. J. Bishop. A quasisymmetric surface with no rectifiable curves. Proc. Amer. Math. Soc., 127(7):2035–2040, 1999. 10.1090/S0002-9939-99-04900-XSearch in Google Scholar

[4] M. Bonk and B. Kleiner. Quasisymmetric parametrizations of two-dimensional metric spheres. Invent. Math., 150(1):127– 183, 2002. 10.1007/s00222-002-0233-zSearch in Google Scholar

[5] G. David and T. Toro. Reifenberg flat metric spaces, snowballs, and embeddings. Math. Ann., 315(4):641–710, 1999. 10.1007/s002080050332Search in Google Scholar

[6] J. Luukkainen. Assouad dimension: antifractal metrization, porous sets, and homogeneous measures. J. KoreanMath. Soc., 35(1):23–76, 1998. Search in Google Scholar

[7] D. Meyer. Snowballs are quasiballs. Trans. Amer. Math. Soc., 362(3):1247–1300, 2010. 10.1090/S0002-9947-09-04635-2Search in Google Scholar

[8] S. Rohde. Quasicircles modulo bilipschitz maps. Rev. Mat. Iberoamericana, 17(3):643–659, 2001. 10.4171/RMI/307Search in Google Scholar

[9] P. Tukia and J. Väisälä. Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math., 5(1):97–114, 1980. 10.5186/aasfm.1980.0531Search in Google Scholar

[10] J. Väisälä. Quasisymmetric maps of products of curves into the plane. Rev. Roumaine Math. Pures Appl., 33(1-2):147–156, 1988. Search in Google Scholar

[11] V. Vellis and J.-M. Wu. Sets of constant distance from a Jordan curve. Ann. Acad. Sci. Fenn. Math., 39(1):211–230, 2014. 10.5186/aasfm.2014.3905Search in Google Scholar

[12] V. Vellis and J.-M. Wu. Quasisymmetric spheres over Jordan domains. Trans. Amer. Math. Soc., to appear, http://arxiv.org/ abs/1407.5029. Search in Google Scholar

Received: 2015-6-5
Accepted: 2016-2-14
Published Online: 2016-3-11

© 2016 Vyron Vellis

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 22.9.2023 from https://www.degruyter.com/document/doi/10.1515/agms-2016-0002/html
Scroll to top button