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Abstract: Bowen’s notion of so�c entropy is a powerful invariant for classifying probability-preserving ac-
tions of so�c groups. It can be de�ned in terms of the covering numbers of certain metric spaces associated
to such an action, the ‘model spaces’.
The metric geometry of these model spaces can exhibit various interesting features, some of which provide
other invariants of the action. This paper explores an approximate connectedness property of the model
spaces, and uses it give a new proof that certain groups admit factors of Bernoulli shifts which are not
Bernoulli. This was originally proved by Popa. Our proof covers fewer examples than his, but provides addi-
tional information about this phenomenon.
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1 Introduction
Let G be a discrete so�c group, pX, µq a standard probability space, and T : G ñ X a measurable action pre-
serving µ. The triple pX, µ, Tq is called a G-system or just a system. Fix a choice of so�c approximation
Σ “ pσnqně1 to G, where each σn is a map from G to SympVnq for some �nite set Vn.

The so�c entropy of pX, µ, Tq relative to this so�c approximation gives a generalization of the classical
Kolmogorov-Sinai entropy which is still available if G is not amenable. If pX, µ, Tq has a �nite generating
partition, then its so�c entropy rel Σ was de�ned by Lewis Bowen in [3], and this de�nition was generalized
to any G-system by Kerr and Li in [13, 14]. In case G is amenable, the agreement between so�c entropy rel Σ
and Kolmogorov-Sinai entropy was shown in [6].

The present paper introduces a new invariant of G-systems, constructed from similar ingredients to the
so�c entropy. Our starting point is the formulation of so�c entropy given in [1], which slightly modi�es [14]
without changing the resulting entropy values.

In the �rst place, we consider a special class of G-systems. A metric G-process is a quadruple
pXG , µ, S, dq in which X is another standard measurable space, d is a compact metric on X whose Borel sets
are the σ-algebra of X, S is the right-shift action on XG, and µ is an S-invariant probability. Then hΣpµq is
de�ned in terms of the covering numbers of certain metric spaces of ‘good models’ for µ over Σ. The ‘good
models’ used in [1] di�er slightly from their earlier counterparts in [13, 14], but it is shown in [1, Subsection
3.2] that one always obtains the same values for so�c entropy as in those earlier papers. The resulting entropy
value hΣpµq does not depend on the choice of d and is an isomorphism-invariant of the G-system pXG , µ, Sq.
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Since any G-system is isomorphic to a shift-system, this lets us extend the de�nition of hΣ unambiguously to
arbitrary G-systems.

In the approach of [1], and similarly to the other approaches, ‘good models’ for pXG , µ, S, dq are cer-
tain elements of the �nite-dimensional Cartesian powers XVn . Each x P XVn has an ‘empirical distribution’
Pσnx which may be used to describe its ‘local statistics’ over certain subsets of Vn: see Subsection 2.1. It is a
‘good model’ if its empirical distribution is close to µ in the weak˚ topology on ProbpXGq. For any weak˚-
neighbourhood O of µ, let

ΩpO, σnq :“ tx P XVn : Pσnx P Ou

be the set of models which are ‘good’ according to this neighbourhood O.
Also, for each n, let dpVnq be the Hamming average of copies of d on XVn :

dpVnqpx, x1q “ 1
|Vn|

ÿ

vPVn
dpxv , x1vq for x “ pxvqvPVn , x

1
“ px1vqvPVn .

So�c entropy is de�ned in terms of certain asymptotic geometric features of the sequences of metric spaces
`

ΩpO, σnq, dpVnq
˘

.

Speci�cally, it is the quantity

hΣpµq :“ sup
δą0

inf
O

lim sup
nÝÑ8

1
|Vn|

log covδ
`

ΩpO, σnq, dpVnq
˘

,

where covδ is the δ-covering number of the givenmetric space andO runs over all weak˚-neighbourhoods of
µ.

The original motivation for studying so�c entropy was the classi�cation of Bernoulli systems: see [3,
12]. It has quickly found numerous other applications, and suggests many directions for further research.
One of these is to look for other properties of the metric spaces pΩpO, σnq, dpVnqq that carry some dynamical
information about µ, and might give rise to other invariants.

The present paper focuses on one such property, which we refer to as ‘connected model spaces rel Σ’.
It is an approximate kind of connectedness for the spaces ΩpO, σnq. In case X is �nite, these metric spaces
are discrete, so we do not ask for their connectedness as in classical point-set topology. Rather, we consider
whether connectedness holds in a suitable asymptotic sense asO becomes smaller and n ÝÑ 8. The precise
notion we need is given in De�nition 2.5.

Once that de�nition has been made, we can show that the property of connected model spaces rel Σ is
an isomorphism-invariant. In fact we prove more than this. Some factor maps do not preserve the property
of connected model spaces, but we introduce a class of factor maps which do, and show that they include all
isomorphisms.

Given a factor map
Φ : pXG , µ, Sq ÝÑ pYG , ν, Sq,

and also compact metrics dX on X and dY on Y which generate their σ-algebras, the developments in [1]
include the construction of suitable ‘approximating maps’ from XVn to YVn . These send good models for µ
to good models for ν, up to various errors that must be carefully controlled in terms of the metrics dpVnq

X
and

dpVnq
Y

. Put roughly, we say thatΦ is ‘model-surjective rel Σ’ if all goodmodels for pYG , ν, Sq are close to images
of good models for pXG , µ, Sq under these approximating maps. This is made precise in De�nition 3.1.

Having introduced this special property of factor maps, we will show that it is preserved by composition,
and that all isomorphisms have this property. Then we prove the following.

Theorem A. Let Φ be a factor map as above. If pXG , µ, S, dXq has connected model spaces rel Σ and Φ is
model-surjective rel Σ, then pYG , ν, S, dYq also has connected model spaces rel Σ.

In particular, having connected model spaces rel Σ is a property only of the shift-system pXG , µ, Sq, not
depending on the choice of dX, and is an isomorphism-invariant.
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Having proved Theorem A, the property of having connected model spaces rel Σ can be extended unam-
biguously to any G-system, by picking an isomorphism from it to a G-process.

Although factor maps need not preserve the connectedness of model spaces rel Σ, it turns out inverse
limits do.

Theorem B. If all members of an inverse sequence of G-systems have connected model spaces rel Σ, then so
does the inverse limit.

The rest of the paper is given to some examples of connected and non-connected model spaces. In the
�rst place, we have the following.

Theorem C. For any so�c group G and so�c approximation Σ, Bernoulli systems over G have connected model
spaces rel Σ.

On the other hand, for some groups G and so�c approximations Σ there are factors of Bernoulli shifts that
do not have connectedmodel spaces (and so, in particular, not all factor maps are model-surjective). The last
section of the paper is given to a family of such examples.

Let m be the Haar probability measure on the circle T, and consider the factor map of G-systems

pTG ,mˆG , Sq ÝÑ pX, µ, Tq (1.1)

de�ned by forming the quotient by the diagonal subgroup of TG: that is,

X “ TG{tp. . . , θ, θ, . . .q : θ P Tu,

µ is the Haar measure on this quotient group, and T is the quotient action.

Theorem D. If G is a residually �nite group with Kazhdan’s property (T), then G has a so�c approximation Σ
relative to which the factor system pX, µ, Tq constructed above does not have connected model spaces.

In particular, this implies that pX, µ, Tq is not Bernoulli.
These examples form a special case of a construction of non-Bernoulli factors of Bernoulli shifts due to

Popa [18], so for general Gwe refer to pX, µ, Tq as the Popa factor of pTG ,mˆG , Sq. These factors show a strik-
ing di�erence between ergodic theory for amenable and non-amenable groups: among the former, factors of
Bernoulli shifts are always still Bernoulli [17]. Popa’s proof in [18] gives examples for a considerably larger
range of groups G than those in Theorem D. It rests on calculations of the cohomology of these actions, gen-
eralizingwork of Popa and Sasyk [19]. Our proof of TheoremD also uses some (more elementary) cohomology
theory, and it covers fewer examples, but it gives a geometric interpretation to the non-Bernoullicity of these
factors.

As pointed out to me by Brandon Seward, combining Theorems B, C and D immediately gives the follow-
ing.

Corollary D1. If G is as in Theorem D, then there are factors of Bernoulli G-systems which are not inverse limits
of Bernoulli G-systems.

This contrasts with actions of amenable groups, among which inverse limits of Bernoulli systems, like
factors, are also always still Bernoulli [17].

In the reverse direction, there are many groups which admit inverse limits of Bernoulli shifts which are
not factors of Bernoulli shifts. Indeed, if G has a non-amenable free subgroup, then Bowen has shown [4]
that every Bernoulli shift over G factors onto every other Bernoulli shift (this property may in fact hold for all
non-amenable G: see [5, Corollary 1.6] for partial progress). One may therefore form an inverse sequence

¨ ¨ ¨ ÝÑ pAG3 , pˆG3 , Sq ÝÑ pAG2 , pˆG2 , Sq ÝÑ pAG1 , pˆG1 , Sq

of Bernoulli systems in which each An is a �nite alphabet and the Shannon entropies Hppnq have �nite sum.
Now the inverse limit of this sequence has generating partitions of arbitrarily small Shannon entropy, by
joining the generating partitions of all systems that are su�ciently high up the sequence. As a result, that
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inverse limit has Rokhlin entropy zero, and hence also so�c entropy at most zero [21, 22]. On the other hand,
every factor of a Bernoulli shift has positive so�c entropy [11].

Our tools can also be used to prove another strengthening of Theorem D. Recall that a factor map
Φ : pX, µ, Tq ÝÑ pY , ν, Sq of G-systems is complemented if there is another factor map Ψ : pX, µ, Tq ÝÑ
pZ, θ, Rq such that the combined map pΦ, Ψq is a measure-theoretic isomorphism

pX, µ, Tq –
ÝÑ pY ˆ Z, ν ˆ θ, S ˆ Rq.

In this case pY , ν, Sq is a complemented factor of pX, µ, Tq.
The Popa factors give examples of factor maps of Bernoulli shifts that are not model-surjective. However,

it turns out that all complemented factormapsof Bernoulli shifts (andactually of amuchmore general class of
systems) are model-surjective: see Theorem 6.8. Combined with Theorems A and C, this shows the following.

CorollaryD2. IfG is as in TheoremD then thePopa factor pX, µ, Tq is not a complemented factor of anyBernoulli
shift.

This corollary was also suggested to me by Brandon Seward. It can also be proved using Popa’s coho-
mological approach, as has been shown to me by Yongle Jiang. The main new ingredient is the fact that, if
pX, µ, Tq is a complemented factor of any Bernoulli shift pXG , νˆG , Sq, then the resulting inclusion homomor-
phism from the degree-one, T-valued cohomology of the former into the latter is injective. Similar arguments
can be found in Jiang’s recent paper [9].

Finally, the above discussion suggests the following.

Question 1.1. Is it true that for any group G, any complemented factor of a Bernoulli system is Bernoulli? C

I do not know that the answer is Yes for any non-amenable group.

2 Connected model spaces

2.1 Model spaces and maps between them

This part of the paper follows closely the approach to so�c entropy developed in [1, Part I], and mostly uses
the same notation.

Weuse ‘big-O’ and ‘little-o’ notationwithout further comment. Among real numbers, we sometimeswrite
‘a «ε b’ in place of ‘|a ´ b| ă ε’.

If pX, dXq and pY , dYq are two metric spaces, ε ą 0 and L ă 8, then a map φ : X ÝÑ Y is ε-almost
L-Lipschitz if

dYpφpxq, φpx1qq ď ε ` LdXpx, x1q @x, x1 P X.
A map is ε-almost Lipschitz if this holds for some L.

We next recall some of the basic de�nitions and results from [1, Part I]. They are mostly small modi�ca-
tions to [3, 14]. Suppose that pXG , µ, S, dq is a metric G-process, meaning that pX, dq is a compact metric
space, S is the right-shift action of G on XG, and µ P ProbpXGq is S-invariant.

Given a �nite set V and a map σ : G ÝÑ SympVq, and also v P V and x P XV , we de�ne the pullback
name of x at v by

Πσv pxq :“ pxσgpvqqgPG P XG .
In terms of these, the empirical distribution of x is

Pσx :“
1
|V|

ÿ

vPV
δΠσv pxq.

For any w˚-neighbourhood O of µ in ProbpXGq, the O-good models for µ are the elements of

ΩpO, σnq :“ tx : Pσx P Ou.
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Motivation for these concepts and their use in de�ning so�c entropy can be found in [1, Subsection 3.1].
Given any map ψ : XG ÝÑ Y and also a map σ : G ÝÑ SympVq for some �nite set V, we de�ne the

associated map ψσ : XV ÝÑ YV by
ψσpxq :“

`

ψpΠσv pxqq
˘

vPV ,

as in [1, Subsection 4.2].
Now let Φ “ φG : pXG , µ, S, dXq ÝÑ pYG , ν, S, dYq be a factor map of metric G-processes, where we use

the same notation as in [1, Subsection 4.1]. As in that reference, an η-almost Lipschitz (or η-AL) approxi-
mation to φ rel pµ, dX, dYq is a measurable map ψ : XG ÝÑ Y with the following properties.

i) The map ψ approximates φ in the sense that
ż

dYpφpxq, ψpxqq µpdxq ă η. (2.1)

ii) There is a �nite D Ď G such that ψ is D-local: that is, it depends only on coordinates in D.
iii) There is a D-local open subset U Ď XG such that µpUq ą 1´ η and such that ψ|U is η-almost Lipschitz

from dpDq
X

to dY.

These always exist for every η [1, Lemma 4.3]. In the applications below, we will more often consider
sequences of such approximations: an almost Lipschitz approximating sequence for φ rel pµ, dX, dYq is
a sequence of maps ψk : XG ÝÑ Y which are ηk-AL approximations to φ rel pµ, dX, dYq for some positive
parameters ηk ÝÑ 0. This situation is denoted by ψk

aL
ÝÑ φ.

Although we will be using such maps to study isomorphism-invariant properties of systems, the de�ni-
tions above depend crucially on the choice of the compact metrics dX and dY.

Later in this section, we will need some estimates from [1] concerning AL approximations and the corre-
sponding maps on model spaces. Suitable versions are recalled in the following lemmas.

Lemma 2.1 (Good models are mapped to good models: [1, Proposition 4.10]). For every w˚-neighbourhoodN

of ν there is an η ą 0 with the following property. If ψ is an η-AL approximation to φ rel pµ, dX, dYq, then there
is a w˚-neighbourhood O of µ such that

ψσn
`

ΩpO, σnq
˘

Ď ΩpN, σnq

for all su�ciently large n.

Lemma 2.2 (Almost Lipschitz action on model spaces: [1, Lemma 4.9]). If ψ is an η-AL approximation to φ
rel pµ, dX, dYq, then there are K ă 8 and a w˚-neighbourhood O of µ such that

ψσn |ΩpO, σnq

is p3ηq-almost K-Lipschitz from dpVnq
X

to dpVnq
Y

for all su�ciently large n.

For our later application of these results, it is convenient to combine them into a single assertion in terms
of bases for the w˚-topologies around µ and ν. Since those topologies are metrizable, there exist such bases
which are decreasing sequences of open neighbourhoods. We will frequently use this fact without further
explanation.

Corollary 2.3. Suppose that ψk
aL
ÝÑ φ rel pµ, dX, dYq. Then there are

• parameters εk Ó 0 and Kk ă 8,
• a sequence of w˚-neighbourhoods O1 Ě O2 Ě . . . of µ,
• and a base of w˚-neighbourhoodsN1 Ě N2 Ě . . . at ν

such that for each k both of the following hold for all su�ciently large n:

ψσnk
`

ΩpOk , σnq
˘

Ď ΩpNk , σnq
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and
ψσnk |ΩpOk , σnq is εk-almost Kk-Lipschitz from dpVnq

X
to dpVnq

Y
.

Proof. Let ηk Ó 0bea sequence such thatψk is an ηk-ALapproximation toφ rel µ for every k, and set εk :“ 3ηk
for each k.

Let M1 Ě M2 Ě . . . be a base of w˚-neighbourhoods at ν with M1 “ ProbpYGq. By Lemma 2.1, for each
j P N there are k0pjq P N and w˚-neighbourhoods O1j,k for each k ě k0pjq such that for every k ě k0pjq we
have

ψσnk
`

ΩpO1j,k , σnq
˘

Ď ΩpMj , σnq for all su�ciently large n.

We may take k0p1q “ 1 becauseM1 “ ProbpYGq, and we may also assume that k0pjq ÝÑ 8 as j ÝÑ 8. Now
let

Nk :“Mmaxtj: k0pjqďku

and choose w˚-neighbourhoods O1k of µ satisfying

O1k Ď
č

j: k0pjqďk
O1j,k .

By forming running intersections wemay also assume thatO11 Ě O12 Ě . . . . For each k, letting j be the largest
integer for which k0pjq ď k, it follows that

ψσnk
`

ΩpO1k , σnq
˘

Ď ψσnk
`

ΩpO1j,k , σnq
˘

,

and this is contained in ΩpMj , σnq “ ΩpNk , σnq for all su�ciently large n.
On the other hand, Lemma 2.2 gives values Kk ă 8 and w˚-neighbourhoods O2k of µ such that

ψσnk |ΩpO
2
k , σnq is εk-almostKk-Lipschitz for all su�ciently large n, for every k ě 1. Once againwemayassume

that O21 Ě O22 Ě . . . .
Finally, let Ok :“ O1k X O2k for each k.

The deduction of this corollary from Lemmas 2.1 and 2.2 is similar to the deduction of ‘sequence versions’ of
those lemmas in [1, Subsection 4.3]. But it seems easier to make this deduction from scratch here, rather than
adapting the corollaries in that subsection.

Corollary 2.3 has a further consequence that is worth recording by itself.

Corollary 2.4. If ψk
aL
ÝÑ φ rel pµ, dX, dYq and if xn P XpVnq is a sequence of models such that Pσnxn

weak˚
ÝÑ µ,

then
Pσnψσnkn pxnq

weak˚
ÝÑ ν

whenever the sequence k1 ď k2 ď . . . grows su�ciently slowly.

Proof. This really uses only the �rst conclusion of Corollary 2.3: there are sequences O1 Ě O2 Ě . . . and
N1 Ě N2 Ě . . . as in that corollary such that for all k we have

ψσnk
`

ΩpOk , σnq
˘

Ď ΩpNk , σnq for all su�ciently large n.

Since Pσnxn
weak˚
ÝÑ µ, for every k there is an Npkq such that xn P ΩpOk , σnq for all n ě Npkq. Provided the

sequence k1 ď k2 ď . . . grows su�ciently slowly, it follows that xn P ΩpOkn , σnq for all su�ciently large n,
and also that

ψσnkn
`

ΩpOkn , σnq
˘

Ď ΩpNkn , σnq for all su�ciently large n.

These together imply that

ψσnkn pxnq P ΩpNkn , σnq for all su�ciently large n,

and so their empirical distributions converge to ν, sinceN1 Ě N2 Ě . . . is a base for the w˚-topology at ν.
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2.2 Connected model spaces

Let pY , dYq be a metric space, let x, y P Y, and let δ ą 0. A δ-path from x to y is a �nite sequence

x “ x0, x1, . . . , x` “ y

in Y such that dYpxi , xi`1q ă δ for every i P t0, . . . , `´1u. The integer ` is the length of this δ-path. If A Ď Y
and δ ą 0, then A is δ-connected (according to dY ) if for any x, y P A there is a δ-path from x to y contained
in A.

We are now ready to de�ne our new property of metric G-processes:

De�nition 2.5 (Connected model spaces rel Σ). Let pXG , µ, S, dq be a metric G-process. It has connected
model spaces rel Σ if the following holds:

If n1 ă n2 ă . . . , and xi , yi P XVni are two sequences satisfying

Pσnixi , P
σni
yi

weak˚
ÝÑ µ,

then there are a sequence δi Ó 0 and a sequence of δi-paths

txi “ xi,0, xi,1, . . . , xi,`i “ yiu Ď XVni

(according to the metrics dpVni q) such that for any w˚-neighbourhood O of µ we have

txi,j : 0 ď j ď `iu Ď ΩpO, σni q (2.2)

for all su�ciently large i.

This de�nition is made more complicated by the allowance of an arbitrary subsequence n1 ă n2 ă . . . .
This is because of cases in which there are some other subsequence n11 ă n12 ă . . . and a w˚-neighbourhood
O such that ΩpO, σn1i q “ H for all i. Such cases should still be called ‘connected’ if any two su�ciently good
models, for a su�ciently large value of n, can be joined by a δ-path consisting of fairly good models. This
requirement simply ignores any values n1 for which σn1 admits no good models at all. However, if there is a
subsequence n11 ă n12 ă . . . as above, then there can be no sequences xn , yn P XVn de�ned for all integers n
which satisfy Pσnxn , P

σn
yn

weak˚
ÝÑ µ, and wemust pass to a subsequence which eventually avoids the n1is. This will

be made clearer by the proof of Proposition 2.6 below.
De�nition 2.5 can be re-written more directly in terms of connectedness properties of the model spaces

ΩpO, σnq. At �rst sight, it seems similar to requiring that these spaces are δ-connected for all su�ciently large
n, but that impression is not quite correct. In order to �x it, we need a slightly more complicated notion.

If pY , dYq is any metric space and A Ď B Ď Y is a nested pair of subsets, then the pair pA, Bq is relatively
δ-connected (according to dY ) if for any x, y P A there is a δ-path from x to y contained in B.

Proposition 2.6. If pXG , µ, S, dq is a metric G-process, then the following are equivalent.

1. It has connected model spaces rel Σ.
2. For every δ ą 0 and every w˚-neighbourhood O of µ, there is a w˚-neighbourhood O1 Ď O such that the

pair
`

ΩpO1, σnq, ΩpO, σnq
˘

is relatively δ-connected according to dpVnq for all su�ciently large n.

These properties are both implied by the following.

3. For every δ ą 0, µ has a base of w˚-neighbourhoods N with the property that the set ΩpN, σnq is δ-
connected for all su�ciently large n.
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Proof. (1.ñ 2.) If property 2 does not hold, then there are some δ and O for which it fails. Let O1 Ě O2 Ě ¨ ¨ ¨

be a base for the w˚-topology at µ such that Oi Ď O for every i. By the failure of property 2, there are integers
n1 ă n2 ă . . . and pairs txi , yiu Ď ΩpOi , σni q for every i which cannot be connected by δ-paths that stay
inside ΩpO, σni q. This prevents the existence of δ-paths from xi to yi satisfying (2.2) in De�nition 2.5.

(2.ñ 1.) Let xi , yi P XVni be a pair of sequences as in De�nition 2.5. Let O1 Ě O2 Ě . . . be a base for the
w˚-topology at µ.

For each j, property 2 gives a sub-neighbourhood O1j Ď Oj such that the pair
`

ΩpO1j , σnq, ΩpOj , σnq
˘

(2.3)

is relatively 2´j-connected (according to dpVnq) for all su�ciently large n.
Since Pσnixi , P

σni
yi

weak˚
ÝÑ µ, there are i1 ă i2 ă . . . such that xi , yi P ΩpO1j , σni q for all i ě ij. Now the relative

2´j-connectedness of the pair (2.3) implies that for each i ě ij there is a 2´j-path

txi “ xi,0, xi,1, . . . , xi,`i “ yiu Ď ΩpOj , σni q.

These paths verify De�nition 2.5 with
δi :“ 2´maxtj: iěiju.

(3.ñ 2.) For any O, property 3 gives a sub-neighbourhood N Ď O for which ΩpN, σnq is δ-connected for
all su�ciently large n, and this implies that the pair

`

ΩpN, σnq, ΩpO, σnq
˘

is relatively δ-connected.

In all the examples of connectedmodel spaces that I know, one actually has property 3 above, which is easier
to verify. But I do not see a proof that these are equivalent, and I also do not know whether property 3 is
isomorphism-invariant.

Remark. De�nition 2.5 has a natural modi�cation as follows. Let us say that pXG , µ, S, dq has uniformly
connected model spaces rel Σ if there is a function ` : p0, 1q ÝÑ N for which following holds:

If n1 ă n2 ă . . . , and xi , yi P XVni are two sequences satisfying

Pσnixi , P
σni
yi

weak˚
ÝÑ µ,

then for every δ ą 0 and all su�ciently large i there are δ-paths

txi “ xi,0, xi,1, . . . , xi,`pδq “ yiu Ď XVni

such that for any w˚-neighbourhood O of µ we have

txi,j : 0 ď j ď `pδqu Ď ΩpO, σni q

for all su�ciently large i.

That is, one requires that the lengths of the δ-paths depend only on δ, not on n. It is easily shown that this
variant is formally stronger than De�nition 2.5

In the case of our principal examples, Bernoulli shifts, the proof below actually shows that this stronger
property holds. I do not know of any examples that have connected but not uniformly connnected model
spaces. C
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3 Model-surjective factor maps and Theorem A
As promised in the Introduction, for some groups G the Popa factor does not preserve the connectedness
of model spaces. We now introduce a special kind of factor map which does always preserve this property,
and show that all isomorphisms are factor maps of this kind. They are de�ned in terms of goodmodels for the
associated graphical joinings, butwewill prove an equivalent characterization in terms of AL approximations
to the factor map. We �nish the subsection by proving Theorem A.

Later we show that complemented factor maps of Bernoulli shifts are also of this kind, which leads to the
proof of Corollary D2.

Let
Φ “ φG : pXG , µ, S, dXq ÝÑ pYG , ν, S, dYq

be a factor map of metric G-processes, and let

λ “
ż

XG
δpx,Φpxqq µpdxq

be the associated graphical joining of µ and ν. Also, let d be the Hamming average of the metrics dX and dY
on Xˆ Y.

De�nition 3.1 (Model-surjective factor maps rel Σ). This factor map Φ ismodel-surjective rel Σ if, whenever
n1 ă n2 ă . . . and yi P YVni is a sequence satisfying

Pσniyi
weak˚
ÝÑ ν,

there is another sequence xi P XVni such that

Pσni
pxi ,yiq

weak˚
ÝÑ λ,

where this last convergence refers to the w˚-topology arising from the product topology on XG ˆ YG.

Clearly the sequence xi obtained above must also satisfy Pσnxi
weak˚
ÝÑ µ. The idea behind De�nition 3.1 is

that, if the joint empirical distribution converges to λ, then this forces xi to ‘resemble’ a pre-image of yi under
some model-space approximation to the factor map Φ.

The need to consider a so�c sub-approximation pσni qiě1 of Σ is similar to the case of De�nition 2.5.
Beware that at this point, De�nition 3.1 requires a particular choice of the metrics dX and dY. Once we

have shown that isomorphisms are model-surjective (Proposition 3.6 below), it will follow that De�nition 3.1
actually depends only on the measure theoretic structure of Φ as a factor map from pXG , µ, Sq to pYG , ν, Sq,
and moreover that it can be extended unambiguously to factor maps of general G-systems (Corollary 3.7).

First we need a simple lemma and corollary which relate the metrics dpVnq and certain empirical distri-
butions.

Lemma 3.2. Let Σ be as before, and let pX, dq be a compact metric space. For any two sequences xn , zn P XVn ,
the following are equivalent:

1. we have dpVnqpxn , znq ÝÑ 0;
2. in the w˚ topology, any subsequential limit of the sequence

Pσn
pxn ,znq P ProbpX

G
ˆ XGq

is supported on the diagonal
tpx, xq : x P XGu.

In case Pσnxn w˚-converges to some µ P ProbpXGq, either of the above conditions implies that Pσnzn w˚-converges
to the same limit.
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Proof. On XG ˆ XG, consider the function

Fpx, x1q :“ dpxe , x1eq for x “ pxgqg , x1 “ px1gqg P XG .

It is continuous, and a simple calculation gives
ż

F dPσn
pxn ,znq “ d

pVnqpxn , ynq.

Assuming condition (1), it follows that any subsequential limit

λ “ lim
jÝÑ8

Pσnj
pxnj ,znj q

must satisfy
ş

F dλ “ 0, hence be supported on the set tpx, x1q : xe “ x1eu. Since λ is S-invariant (see [1,
Lemma 3.2]), it must be supported on the diagonal.

On the other hand, if (1) fails, then there are some δ ą 0 and some subsequence n1 ă n2 ă . . . for which

dpVnj qpxnj , znj q ÝÑ δ as j ÝÑ 8.

By the sequential compactness of the w˚-topology on ProbpXG ˆ XGq, there is a further subsequence for
which the empirical distributions converge to some λ. This λmust then satisfy

ş

F dλ “ δ ą 0, and so cannot
be supported on the diagonal.

Finally, anymeasure supported on the diagonalmust have equal �rst and secondmarginals, so condition
(2) clearly implies the last part of the lemma.

Corollary 3.3. Let
Φ “ φG : pXG , µ, S, dXq ÝÑ pYG , ν, S, dYq

be a factor map of metric G-processes, and let

λ “
ż

XG
δpx,Φpxqq µpdxq

be the resulting graphical joining of these two systems. Suppose that xn P XVn and yn, wn P YVn are sequence
such that

Pσn
pxn ,ynq, P

σn
pxn ,wnq

weak˚
ÝÑ λ.

Then dpVnq
Y

pyn ,wnq ÝÑ 0.

Proof. For each n, let
θn :“ Pσnpxn ,yn ,wnq

P ProbppXˆ Yˆ YqGq,

and let
θ :“ lim

jÝÑ8
θnj

be any w˚-subsequential limit of these measures.
The projections of θn onto the two copies of pXˆYqG are Pσn

pxn ,ynq and P
σn
pxn ,wnq

, sowe know that the limiting
measure θ has both of these projections equal to λ. Hence θ is supported on

tpx, y, y1q : x P XG , y “ φGpxq “ y1u.

Therefore the limit of Pσn
pynj ,wnj q

is supported on the diagonal in pY ˆ YqG, and Lemma 3.2 completes the
proof.

Nowwe can begin the study of model-surjectivity. Graphical joinings give the easiest way to de�ne this prop-
erty, but it is useful to have a more ‘functional’ characterization. This can be given in terms of AL approxima-
tions to the factor map.
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Lemma 3.4. For Φ “ φG as above, the following are equivalent.

1. The factor map Φ is model-surjective rel Σ.
2. Suppose that ψk

aL
ÝÑ φ rel pµ, dX, dYq. If n1 ă n2 ă . . . and yi P YVni is a sequence satisfying

Pσniyi
weak˚
ÝÑ ν,

then there is a sequence xi P XVni such that we have

Pσnixi
weak˚
ÝÑ µ

and
dpVni q
Y

`

yi , ψ
σni
ki pxiq

˘

ÝÑ 0

whenever k1 ď k2 ď . . . grows su�ciently slowly.

Proof. Letψk
aL
ÝÑ φ be anALapproximating sequence rel pµ, dX, dYq. Also, let ξ : XG ÝÑ Xbe theprojection

onto the teu-coordinate, so ξG “ idXG . An easy check (or see [1, Corollary 4.7]) gives that

pξ , ψkq
aL
ÝÑ pξ , φq rel pµ, dX, dq, (3.1)

where d is the Hamming average of dX and dY on Xˆ Y, and pξ , φq denotes the map

XG ÝÑ Xˆ Y : x ÞÑ pξpxq, φpxqq.

Let n1 ă n2 ă . . . , and let yi P YVni be a sequence whose empirical distributions tend to ν. By re-labeling
the so�c sub-approximation pσni qiě1 if necessary, we may assume that ni “ i for all i, and hence write yn as
an element of YVn .

Now suppose xn P XVn is another sequence whose empirical distributions tend to µ. By (3.1) and Corol-
lary 2.4, it follows that

Pσn
pxn ,ψσnkn pxnqq

“ Pσn
pξ ,ψkn qσn pxnq

weak˚
ÝÑ λ,

provided the sequence k1 ď k2 ď . . . grows su�ciently slowly.
The result follows because Lemma 3.2 (respectively Corollary 3.3) shows that

Pσn
pxn ,ynq

weak˚
ÝÑ λ

if (respectively only if)

dpVnq
`

pxn , ynq, pxn , ψσnkn pxnqq
˘

“
1
2d

pVnq
Y

`

yn , ψσnkn pxnq
˘

ÝÑ 0.

Proposition 3.5. If

Φ : pXG , µ, S, dXq ÝÑ pYG , ν, S, dYq and rΦ : pYG , ν, S, dYq ÝÑ pZG , θ, S, dZq

are both model-surjective rel Σ, then so is their composition.

Proof. As in the proof above, after passing to a so�c sub-approximation we may assume that zn P ZVn is a
sequence whose empirical distributions tend to θ. By the two assumed instances of model-surjectivity rel Σ,
we may �nd �rst a sequence yn P YVn and then a sequence xn P XVn such that

Pσn
pxn ,ynq

weak˚
ÝÑ λ and Pσn

pyn ,znq
weak˚
ÝÑ rλ,

where λ and rλ are the graphical joinings associated to Φ and rΦ respectively.
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Now let
λ1 “ lim

jÝÑ8
Pσnj
pxnj ,ynj ,znj q

be any subsequential limit of the triple empirical distributions. Since its projection onto the �rst two coordi-
nates must be λ and its projection onto the second two coordinates must be rλ, it is supported on the set

 `

x,Φpxq, rΦpΦpxqq
˘

: x P XG
(

,

and hence it must be the full graphical joining associated to pΦ, rΦ ˝ Φq. Therefore any subsequence of

Pσn
pxn ,znq

converges to the graphical joining associated to rΦ ˝ Φ, as required.

Proposition 3.6. If Φ “ φG is an isomorphism, then it is model-surjective for any so�c approximation Σ.

Proof. Let rφ be such that Φ´1 “ rφG, let ξ : YG ÝÑ Y be the projection to the teu-indexed coordinate, and let
rψm aL

ÝÑ rφ rel pν, dY, dXq. Let λ be the graphical joining of Φ. Then we also have

prψm , ξq aL
ÝÑ prφ, ξq rel pν, dY, dq (3.2)

(see again [1, Corollary 4.7] for a careful proof of this).
As in the proofs above, to show the model-surjectivity of Φ we may pass to a so�c sub-approximation,

and so suppose that yn P ProbpYVn q is a sequence whose empirical distributions converge to ν. Then (3.2) and
Lemma 2.1 give that

Pσn´
rψσnmn pynq,yn

¯

weak˚
ÝÑ λ

provided pmnqně1 grows su�ciently slowly.
Letting xn :“ rψσnmn pynq, this completes the proof.

The �rst important consequence of Propositions 3.5 and 3.6 is the following.

Corollary 3.7. If

pXG , µ, S, dXq

Φ
��

– // pXG1 , µ1, S, dX1q

Ψ
��

pYG , ν, S, dYq
– // pYG1 , ν1, S, dY1q

is a commutative square of factor maps in which the horizontal arrows are isomorphisms and Φ is model-
surjective rel Σ, then Ψ is also model-surjective rel Σ.

In particular, model-surjectivity rel Σ in De�nition 3.1 is independent of the choice of generating metrics dX
and dY.

We now have all the ingredients needed to prove Theorem A.

Proof of Theorem A. Let n1 ă n2 ă . . . , and let yi ,wi P Y
Vni be sequences such that

Pσniyi , P
σni
wi

weak˚
ÝÑ ν.

Wemust show that these pairsmaybe connected by op1q-paths consisting of goodmodels, as inDe�nition 2.5.
By passing to the so�c sub-approximation pσni qiě1, we may relabel all these sequences and so assume that
i “ ni for all i, and hence write the index as n itself.
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Now let xn , zn P XVn be the sequences given by the model-surjectivity of Φ applied to the sequences yn
andwn, respectively. Since pXG , µ, S, dXq has connected model space rel Σ, there are parameters δn Ó 0 and
a sequence of δn-paths

xn “ xn,0, xn,1, . . . , xn,`n “ zn

which are eventually contained in ΩpO, σnq for any w˚-neighbourhood O of µ.
Also, let ψk

aL
ÝÑ φ rel pµ, dX, dYq. Corollary 2.3 gives parameters εk Ó 0 and Kk ă 8, a sequence of

w˚-neighbourhoods O1 Ě O2 Ě . . . of µ, and a base of w˚-neighbourhoods N1 Ě N2 Ě . . . at ν, such that
for every k we have both

ψσnk |ΩpOk , σnq is εk-almost Kk-Lipschitz for all su�ciently large n (3.3)

and
ψσnk

`

ΩpOk , σnq
˘

Ď ΩpNk , σnq for all su�ciently large n. (3.4)

Now choose a sequence k1 ď k2 ď . . . growing so slowly that all of the following hold:

i) we have εkn ` Kknδn ÝÑ 0 as n ÝÑ 8 (this is possible because εk ÝÑ 0 and δn ÝÑ 0);
ii) we have

txn,0, xn,1, . . . , xn,`nu Ď ΩpOkn , σnq

for all su�ciently large n;
iii) we have

dpVnq
Y

`

yn , ψσnkn pxnq
˘

, dpVnq
Y

`

wn , ψσnkn pznq
˘

ÝÑ 0 as n ÝÑ 8,

as promised by condition 2 in Lemma 3.4.
iv) we have

ψσnkn |ΩpOkn , σnq is εkn -almost Kkn -Lipschitz

for all su�ciently large n, as is possible by (3.3)
v) we have

ψσnkn
`

ΩpOkn , σnq
˘

Ď ΩpNkn , σnq

for all su�ciently large n, as is possible by (3.4).

Finally, de�ne
yn,i :“ ψσnkn pxn,iq

for each n and each i “ 0, 1, . . . , `n.
By properties (ii) and (iv), the sequence

yn,0, yn,1, . . . , yn,`n

is a pεkn ` Kknδnq-path according to dpVnq
Y

for all su�ciently large n. Combined with properties (i) and (iii),
this shows that

yn , yn,0, yn,1, . . . , yn,`n ,wn

is a δ1n-path from yn town for some sequence of parameters δ1n Ó 0.
Finally, properties (ii) and (v) imply that these image paths are eventually contained inΩpN, σnq for every

w˚-neighbourhoodN of ν, becauseN1 Ě N2 Ě . . . is a base at ν.

4 Connected model spaces for inverse limits
This section gives the proof of Theorem B.
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Proof of Theorem B. Up to isomorphism, the setting of this theorem may be represented as follows. Let
pXGi , µi , Sq, i “ 1, 2, . . . be an in�nite sequence of G-processes, and let

λ P ProbpXG1 ˆ XG2 ˆ ¨ ¨ ¨ q

be a joining of all of them. Let πk :
ś

iě1Xi ÝÑ
śk
i“1Xi be the coordinate projection for each k, and let

λk :“ πGk˚λ. We assume that the G-system
´

k
ź

i“1
XGi , λk , S

¯

has connectedmodel spaces rel Σ for each k, andmust prove the same for the in�nite joining λ. This is easiest
using the reformulation in condition 2 of Proposition 2.6.

For each i, let dXi be a compact generating metric of diameter at most 1 for the space Xi. De�ne metrics
dk on

śk
i“1Xi and d on

ś

iě1Xi by

dk
`

pxiqki“1, px1iqki“1
˘

:“
k
ÿ

i“1
2´idXi pxi , x

1
iq

and
d
`

pxiqkiě1, px1iqiě1
˘

:“
ÿ

iě1
2´idXi pxi , x

1
iq,

so these generate the compact product topologies on their respective spaces.
Now suppose that O is a w˚-neighbourhood of λ. By shrinking it if necessary, we may assume that it has

the form
 

θ : πGk˚θ P O1
(

for some k P N and somew˚-neighbourhoodO1 of λk, since sets of this form are a base ofw˚-neighbourhoods
around λ. Under this assumption, we obtain also

ΩpO, σnq “
!

x P
´

ź

iě1
Xi

¯Vn
: πσnk pxq P ΩpO1, σnq

)

“ ΩpO1, σnq ˆ
´

ź

iěn`1
Xi

¯Vn
for each n. (4.1)

Since the process de�ned by λk has connected model spaces rel Σ, Proposition 2.6 gives another w˚-
neighbourhood O11 Ď O1 of λk such that the pair

`

ΩpO11, σnq, ΩpO1, σnq
˘

is relatively δ-connected according to dpVnqk for all su�ciently large n.
Let

O1 :“
 

θ : πGk˚θ P O11
(

Ď O.

Equation (4.1) has an obvious analog for O1 and O11. Combining these, it follows that the pair
`

ΩpO1, σnq, ΩpO, σnq
˘

is also relatively δ-connected according to dpVnq for all su�ciently large n. This veri�es condition 2 in Propo-
sition 2.6 for the process de�ned by λ.

5 Connected model spaces for Bernoulli systems
This subsection proves Theorem C. We actually prove the slightly stronger property (3) from Proposition 2.6.
Let pX, dq be a compact metric space of diameter at most 1, and let ν P ProbpXq.

This section makes several simple appeals to the phenomenon of measure concentration for product
measures and Hamming metrics: see, for instance, [16] for a dedicated exposition and [8, Chapter 312 ] for a
geometrically-�avoured overview. The speci�c result that we need is the following: see [16, Corollary 1.17].
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Proposition 5.1. For any δ ą 0 there is a β ą 0 such that

sup
f
νˆn

!
ˇ

ˇ

ˇ
f ´

ż

f dνˆn
ˇ

ˇ

ˇ
ě δ

)

“ Ope´βnq

for all n ě 1, where the supremum is over all functions f : Xn ÝÑ R which are 1-Lipschitz for the normalized
Hamming distance dpnq.

Next we identify certain special neighbourhoods of the product measure νˆG. Let F be a �nite subset of
G, and for each D Ď F de�ne an operator ED on CpXFq as follows. First, if F “ tg1, . . . , gmu and D “ Fztgju
for some j ď m, then

ED f pxq :“
ż

X
f pxg1 , . . . , xgj´1 , y, xgj`1 , . . . , xgm q νpdyq.

In general, if D “ Fztgj1 , . . . , gjku, then

ED :“ EFztgj1u ˝ ¨ ¨ ¨ ˝ EFztgjk u,

where the order of this composition is unimportant. This ED is the operator of conditional expectation with
respect to νˆF onto the σ-algebra of Borel subsets ofXF that depend only on coordinates in D. It follows that

ż

f dνˆF “
ż

ED f dνˆF @f P CpXFq. (5.1)

Now suppose that F Ď CpXGq is a family of F-local functions. Let us call it hereditary if every member
of F is 1-Lipschitz according to dpFq

X
and if

f P F ùñ ED f P F @D Ď F.

It is easily checked that each ED preserves the property of being 1-Lipschitz with respect to dpFq
X

. Ahereditary
neighbourhood of νˆG is a w˚-neighbourhood of the form

O :“
!

θ P ProbpXGq :
ż

f dθ «ε
ż

f dνˆG @f P F
)

. (5.2)

for some �nite F Ď G, some ε ą 0, and some �nite hereditary family F of F-local continuous functions.

Proposition 5.2. If O is a hereditary neighbourhood of νˆG and δ ą 0, then the set ΩpO, σnq is δ-connected
according to dpVnq for all su�ciently large n.

We will see the importance of assuming that O is hereditary during the course of the proof.

Proof of Theorem C from Proposition 5.2. Hereditary neighbourhoods form a base for the w˚-topology at µ.
Therefore Proposition 5.2 veri�es condition 3 in Proposition 2.6, which implies connected model spaces.

Proposition 5.2 will be proved by showing how any pair of points inΩpO, σnqmay be connected by a ‘random’
δ-path, provided n is su�ciently large.

We insert randomness into theproof as follows. Fix κ P p0, 1q, to be speci�ed later. For each n, let pξ n,tqtě0
be a discrete-time random walk on XVn with the following transition probabilities:

Ppξ n,t`1 P ¨ | ξ n,tq “
ą

vPVn

`

κδξn,t,v ` p1´ κqν
˘

, (5.3)

where we write ξ n,t “ pξn,t,vqvPVn . Thus, ξ n,t`1 is obtained from ξ n,t by considering each coordinate in XVn

independently, and either re-sampling it from thedistribution νwithprobability1´κ, or leaving it unchanged
with probability κ. Let Pxn be the law of pξ n,tqtě0 on XVn ˆ XVn ˆ ¨ ¨ ¨ conditioned on starting from ξ n,0 “ x,
and let Ex

n denote expectation with respect to Pxn.
We will �nd a δ-path between two goodmodels x and y by starting a copy of this randomwalk at each of

x and y, and showing that after a certain bounded time the following hold:
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(i) these random walks have probably stayed inside the set of good models,
(ii) they have probably taken only steps smaller than δ in the Hamming distance, and
(iii) they can be coupled in such a way that with high probability they end up close to each other.

We break the necessary estimates into three separate lemmas.

Lemma 5.3. For any hereditary neighbourhood O and any t P N, we have

inf
xPΩpO,σnq

Pxn
 

ξ n,t P ΩpO, σnq
(

ÝÑ 1 as n ÝÑ 8.

Proof. Let O be as in (5.2) for some ε ą 0 and some hereditary family F of F-local functions.
Since F is �nite, it su�ces to show that for any one f P F we have

inf
xPΩpO,σnq

Pxn
!

ż

f dPσnξ n,t «ε
ż

f dνˆG
)

ÝÑ 1.

We break this estimate into two further steps.

Step 1. Observe that

Ex
n

ż

f dPσnξ n,t “
1
|Vn|

ÿ

vPVn
Ex
n f
`

Πσnv pξ n,tq
˘

“
1
|Vn|

ÿ

vPVn
Ex
n f
`

pξ n,t,σgnpvqqgPF
˘

.

Since F is �nite and Σ is a so�c approximation, as n ÝÑ 8 it holds with high probability in the choice of
v P Vn that

the points σgnpvq for g P F are distinct. (5.4)

For such v, iterating the formula (5.3) gives

Ex
n f
`

pξ n,t,σgnpvqqgPF
˘

“
ÿ

DĎF
κt|D|p1´ κtq|F|´|D|ED f pΠσnv pxqq.

Let D be a random subset of F which contains each element of F independently with probability κt. Let
P1 be its law and let E1 be expectation with respect to P1. Then the above leads to

Ex
n

ż

f dPσnξ n,t “ E1
´ 1
|Vn|

ÿ

vPV
ED f pΠσnv pxqq

¯

` op1q,

where the op1q-correction results from those few vertices v which fail the requirement (5.4).
Therefore

ˇ

ˇ

ˇ
Ex
n

ż

f dPσnξ n,t ´
ż

f dνˆG
ˇ

ˇ

ˇ
ď E1

ˇ

ˇ

ˇ

1
|Vn|

ÿ

vPV
ED f pΠσnv pxqq ´

ż

f dνˆG
ˇ

ˇ

ˇ
` op1q

“ E1
ˇ

ˇ

ˇ

1
|Vn|

ÿ

vPV
ED f pΠσnv pxqq ´

ż

ED f dνˆG
ˇ

ˇ

ˇ
` op1q

“ E1
ˇ

ˇ

ˇ

ż

ED f dpPσnx ´ νˆGq
ˇ

ˇ

ˇ
` op1q

“ E1
´ˇ

ˇ

ˇ

ż

ED f dpPσnx ´ νˆGq
ˇ

ˇ

ˇ
¨ 1tD‰Hu

¯

` op1q,

where the equality of second and third lines uses (5.1), and the last equality uses that EHf is constant and
equal to

ş

f dνˆF . Since x P ΩpO, σnq with O as in (5.2), the last line above is strictly bounded by

P1tD ‰ Hu ¨ ε ` op1q “ p1´ p1´ κtq|F|qε ` op1q,

where the op1q-correction depends only on the so�c approximation Σ and on }f }8. Therefore this bound is
strictly less than, say, p1´ 1

2 p1´ κtq|F|qε for all su�ciently large n.
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Step 2. On the other hand, wemay regard the quantity
ş

f dPσnξ n,t as a random variable on the probability
space

`

XVn , Pxntξ n,t P ¨ u
˘

.

Using the initial condition ξ n,0 “ x and the transition probabilities (5.3), the probability measure here is
equal to

ą

vPVn

`

κtδxv ` p1´ κtqν
˘

,

which is a product measure on XVn . By the de�nition of the empirical distribution, and recalling that f is
F-local and 1-Lipschitz according to dpFq

X
, this random variable is an |F|-Lipschitz function on this product

space. Therefore Proposition 5.1 gives some β ą 0, depending only on the ratio p1´ κtq|F|ε{|F|, such that

Pxn
!
ˇ

ˇ

ˇ

ż

f dPσnξ n,t ´ Ex
n

ż

f dPσnξ n,t
ˇ

ˇ

ˇ
ě

1
2 p1´ κ

t
q
|F|
qε
)

“ O
`

e´β|Vn|
˘

.

Thus this probability tends to 0 as n ÝÑ 8 uniformly in x.

Combining the estimates from Steps 1 and 2 completes the proof.

Lemma 5.4. Suppose that 1´ κ ă δ. For any t P NY t0u, the random walks constructed above satisfy

inf
xPXVn

Pxn
 

dpVnqpξ n,t , ξ n,t`1q ă δ
(

ÝÑ 1 as n ÝÑ 8.

Proof. By time-homogeneity, it su�ces to prove this when t “ 0.
Since diampX, dq ď 1, we always have

dpVnqpx, ξ n,1q ď
1
|Vn|

ÿ

vPVn
1txv‰ξn,1,vu.

This is an average of indicator functions of independent events, all of themhaving probability atmost 1´κ ă
δ. Therefore another appeal to Proposition 5.1 (or just the special case of a Cherno� bound) gives a β ą 0 for
which

Pxn
 

dpVnqpx, ξ n,1q ě δ
(

“ Ope´β|Vn|q.

Since the right-hand bound is independent of x, this completes the proof.

Lemma 5.5. If s P N is so large that κs ă δ{4, then the following holds. For any n P N and any x, y P XVn , the
distributions

Pxn
 

pξ n,0, . . . , ξ n,sq P ¨
(

and Pyn
 

pζ n,0, . . . , ζ n,sq P ¨
(

of the random walks started at x and y up to the �nite time-horizon s have a couplingQ such that

Q
 

dpVnqpξ n,s , ζ n,sq ă δ
(

ą 1{2. (5.5)

Proof. By an induction on s using (5.3), we have

Pxntξ n,s P ¨u “
ą

vPVn

`

κsδxv ` p1´ κsqν
˘

,

and similarly for Pyntζ n,s P ¨u.
Consider a random triple pα, ξ , ζ qof elements ofXVn with law constructed as follows. First, choose α from

the law νˆVn . Then, for each v P Vn independently, choose two random bits ηv , ωv P t0, 1u independently,
each equal to 1 with probability κs. Finally, for each v P Vn, set

ξ v :“
#

αv if ηv “ 0
xv if ηv “ 1

and ζ v :“
#

αv if ωv “ 0
yv if ωv “ 1.
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Letting λ be the joint distribution of pα, ξ , ζ q, it follows that

λtξ P ¨u “ Pxntξ n,s P ¨u, λtζ P ¨u “ Pyntζ n,s P ¨u,

and
ż

dpVnqpζ , ξqdλ ď 2κs ă δ{2.

Thus, under λ, the pair of random variables pξ , ζ q are a coupling of pξ n,s , ζ n,sq under which the proba-
bility of the event tdpVnqpξ n,x , ζ n,sq ă δu is greater that 1{2, by Chebyshev’s Inequality. Now we can choose
any extension of this to a coupling Q of the whole random trajectories pξ n,0, . . . , ξ n,sq and pζ n,0, . . . , ζ n,sq:
for instance, we can couple them relatively independently over the given coupling of the end-states ξ n,s and
ζ n,s.

Remark. Using Cherno�’s Inequality for the random sum
ř

vpηv ` ωvq, one can actually improve (5.5) to a
lower bound of the form 1´ Ope´β|Vn|q, but we will not need this. C

Proof of Proposition 5.2. Let O be a hereditary w˚-neighbourhood of νˆG and let δ P p0, 1q. Choose some
κ P p1´ δ, 1q, and then choose s P N so that κs ă δ{4.

Having chosen s, let n be so large that

inf
xPΩpO,σnq

Pxn
 

ξ n,t P ΩpO, σnq @t “ 1, 2, . . . , s
(

ą 3{4 (5.6)

and
inf

xPXVn
Pxn

 

dpVnqpξ n,t , ξ n,t`1q ă δ @t “ 0, 1, . . . , s ´ 1
(

ą 3{4. (5.7)

This is possible by Lemmas 5.3 and 5.4, respectively. We will show that ΩpO, σnq is δ-connected for any such
n.

Suppose that x, y P ΩpO, σnq, and let Q be a coupling of two trajectories of the random walk up to
time s, one starting from x and the other from y, as constructed in Lemma 5.5. Then the conjunction of the
bounds (5.6), (5.7) and (5.5) shows that the event
!

x “ ξ n,0, ξ n,1, . . . , ξ n,s´1, ξ n,s , ζ n,s , ζ n,s´1, . . . , ζ n,1, ζ n,0 “ y is a δ-path which stays within ΩpO, σnq
)

has positive probability underQ: so, in particular, such a δ-path exists. Since δ was arbitrary, this completes
the proof.

Remark. Since the choice of s in the above proof depends only on δ, it actually shows that Bernoulli shifts
have uniformly connected model spaces rel Σ, as in the remark at the end of Subsection 2.2. C

6 Analysis of Popa factors

6.1 Actions and cocycles for property-(T) groups

Let G be a �nitely generated group. Let S be a �nite and symmetric generating set, and let R be the set of all
the corresponding relations in the free group on S (including concatenations or conjugates of other relations).
Recall that G has Kazhdan’s property (T) if there is a c ą 0 for which the following holds: whenever π : G ñ

V is a unitary representation, if there is some v P V such that }v} “ 1 and

max
sPS

}πsv ´ v} ď c, (6.1)

then π has a nontrivial invariant vector. The value of c depends on the choice of S, but its existence does not.
See, for instance, [2].

Now suppose that pX, µ, Tq is a G-system and that K ď T is a closed subgroup. Let Upµ, Kq be the set
of measurable functions X ÝÑ K modulo agreement µ-a.e. This is a group under pointwise addition, and is
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naturally equipped with the topology of convergence in probability. That topology is Polish, with a suitable
metric given by the group-norm

}f }µ :“
ż

|f |dµ,

where | ¨ | is the quotient group-norm on T of the usual absolute value on R. The action T : G ñ pX, µq
induces an action of G on Upµ, Kq. We will need to work with the cohomology of this action in degree 1,
which is conveniently expressed in terms of the generators S and relations R.

Firstly, a K-valued 1-cochain is an equivalence class modulo µ of measurable functions α : SˆX ÝÑ K,
or equivalently an element of Upµ, KqS. For a 1-cochain α, we set

}α}µ,S :“
ÿ

sPS
}αps, ¨q}µ .

This de�nes a Polish group-norm on the group of 1-cochains under pointwise addition, similarly to Upµ, Kq.
Next, given a 1-cochain α : S ˆ X ÝÑ K and a word w “ s`s`´1 . . . s1 over the alphabet S, de�ne

αpw, ¨q :“ αps1, ¨q ` αps2, Ts1p¨qq ` ¨ ¨ ¨ ` αps`, Ts1 ...s`´1p¨qq.

Restricting to relations, the resulting function

R ˆ X ÝÑ K : pw, xq ÞÑ αpw, xq

is the 2-coboundary of α, denoted by dα. For any γ : R ˆ X ÝÑ T and �nite F Ď R, we set

}γ}µ,F :“ max
wPF

}γpw, ¨q}µ .

A 1-cochain is a 1-cocycle if dα “ 0 a.s. These form a closed subgroup Z1pT, µ, Kq of the group of 1-
cochains.

Lastly, if β P Upµ, Kq, then its 1-coboundary is the 1-cocycle

dβ : ps, xq ÞÑ βpTsxq ´ βpxq.

These form a further subgroup B1pT, µ, Kq ď Z1pT, µ, Kq, not necessarily closed, and the quotient of these
groups is the �rst cohomology group H1

pT, µ, Kq.
The next result is due to Schmidt [20, Theorem 3.4] and independently to Zimmer [23, Theorem 2.11]. We

include a proof in order to show that the relevant constants do not depend on the action T, or on the choice
of the closed subgroup K of T.

Theorem 6.1. If G has property (T), then there is some r ą 0 with the following property. Let pX, µ, Tq be an
ergodic G-system. For any closed subgroup K ď T and any α P Z1pT, µ, Kq, we have

}α}µ,S ď r ùñ α P B1pT, µ, Kq.

Proof. Step 1. First suppose that K “ T.
Let c be the constant in the de�nition of property (T), let r :“ c2{4π, and consider α P Z1pT, µ,Tq with

}α}µ,S ď r. Let π : G ñ L2pµq be the Koopman representation of T twisted by α:

pπg f qpxq :“ e2πiαpg
´1 ,xq

¨ f pTg
´1
xq.

This is a well-de�ned G-action because α satis�es the de�ning equations for a 1-cocycle.
Now observe that

}πs1X ´ 1X}L2pµq “
d

ż

|e2πiαps´1 ,xq ´ 1|2 µpdxq ď
?
4πr “ c,

where 1X is the constant function 1 on X. Therefore property (T) gives some f P L2pµq such that }f }L2pµq “ 1
and πg f “ f for all g P G.
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This �xed-point equation implies that |f | is T-invariant, hence µ-a.s. constant by ergodicity. Therefore f
is actually S1-valued, and the �xed-point equation reads

e2πiαpg,xq “ f pTgxqf pxq @g P G.

Taking arguments, this asserts that α P B1pT, µ,Tq, as required.

Step 2. Now consider general K ď T. If we regard α as a T-valued function, Step 1 gives some β0 P
Upµ,Tq such that

αpg, xq “ β0pTgxq ´ β0pxq for µ-a.e. x @g P G.

Since α is actually K-valued, this implies that the coset β0pxq ` K is T-invariant, and hence a.s. constant by
ergodicity. Let c` K be that coset, and let βpxq :“ β0pxq ´ c. Then β takes values in K almost surely, and still
satis�es

αpg, xq “ βpTgxq ´ βpxq for µ-a.e. x @g P G.

Next we introduce a ‘roughened’ notion of cocycles. Given a G-system pX, µ, Tq, ε ą 0, and �nite F Ď R, an
element α P Upµ, KqS is a K-valued pF, εq-near-cocycle over pX, µ, Tq if

}dα}µ,F ă ε.

The set of these will be denoted Z1F,εpT, µ, Kq. For these we have the following roughened version of Theo-
rem 6.1.

Theorem 6.2. SupposeG “ xS | Ryhas property (T), and let r ą 0beasTheorem6.1. Then for every r1 ą 0 there
are ε ą 0and�nite F Ď R such that the following holds. If pX, µ, Tq is an ergodicG-system, and α P Z1F,εpT, µ, Kq
satis�es

}α}µ,S ď r,

then there is some β P Upµ, Kq such that
}α ´ dβ}µ,S ă r1.

Proof. Step 1. We �rst convert the result to an assertion about invariant measures on a �xed G-space. Let
Y :“ pKSqG “ KSˆG, equippedwith theG-actionby coordinate right-shift, andde�ne the canonical1-cochain
α0 : S ˆ Y ÝÑ K by

α0ps, yq :“ ys,e .

We will prove that the desired result is implied by the following:

For every r1 ą 0 there are ε ą 0 and �nite F Ď G such that the following holds. If ν is an ergodic shift-invariant Borel probability on
Y, and if

}α0}ν,S ď r and }dα0}ν,F ă ε,
then there is some β0 P Upν, Kq such that

}α0 ´ dβ0}ν,S ă r1 .

Indeed, suppose this result is known, and consider pX, µ, Tq and α as in the statement of the theorem. De�ne

φ : X ÝÑ Y : x ÞÑ pαps, TgxqqsPS,gPG .

Then φ intertwines T with the coordinate shift on Y, and so ν :“ φ˚µ is an ergodic G-invariant probability
on Y. Moreover, the de�nition of φ gives α “ α0 ˝ φ, and so

}α0}ν,S “ }α}µ,S ď r and }dα0}ν,F “ }dα}µ,F ă ε.

So the claim above provides some measurable β0 : Y ÝÑ K such that, setting β :“ β0 ˝ φ, we have

}α ´ dβ}µ,S “ }α0 ´ dβ0}ν,S ă r1.
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Step 2. The rest of the proof is by contradiction. Fix an increasing sequence pFiqiě1 of �nite sets whose
union is R, and suppose that one could �nd r1 ą 0 and a sequence pνiqiě1 of ergodic shift-invariant Borel
probabilities on Y such that

}α0}νi ,S ď r and }dα0}νi ,Fi ă 2´i (6.2)

for all i, but also such that

}α0 ´ dβ0}νi ,S ě r
1. (6.3)

for all measurable functions β0 : Y ÝÑ K and all i.
By passing to a subsequence, we may assume that these measures νi weak˚-converge to a measure ν,

whichmust still be shift-invariant. Since G has property (T), a theorem of Glasner andWeiss [7] gives that the
set of ergodic measures is weak˚-closed among the shift-invariant probability measures on Y, so this ν is still
ergodic.

Now, since each α0ps, ¨q is continuous on Y, the two parts of (6.2) give

}α0}ν,S “ lim
iÝÑ8

}α0}νi ,S ď r

and
}dα0pw, ¨q}ν “ lim

iÝÑ8
}dα0pw, ¨q}νi “ 0 @w P

ď

i
Fi “ R.

Therefore α0 : S ˆ Y ÝÑ K is an element of Z1pshi�, ν, Kq with }α0}ν,S ď r, so Theorem 6.1 gives some
β1 P Upν, Kq such that

α0 “ dβ1 ν-a.s..

Letting β0 bea continuous function that approximates β1 su�cientlywell in ν-probability,we canarrange
that

}α0 ´ dβ0}ν,S ă r1.

Since β0 is continuous and νi weak
˚

ÝÑ ν, this implies that also

}α0 ´ dβ0}νi ,S ă r
1.

for all su�ciently large i. This contradicts (6.3).

Since the bounds in Theorem6.2 donot depend on the system pX, µ, Tq, they are nontrivial even for actions on
�nite sets. In particular, suppose that H ă G is a �nite-index subgroup, let V :“ G{H, and let Γ :“ pV , Eq be
the directed Schreier graph resulting from the generating set S. Let G act on V by left-multiplication. Observe
that S ˆ V is in canonical bijection with E, so a 1-cochain for this system may be interpreted as a map α :
E ÝÑ K. For any F Ď R, let LF be the set of based loops in Γ that correspond to walking around a relation
from the set F, starting from any vertex. We will identify such a loop by a pair pv, wq, where v is its starting
vertex and w is the relation. For any α : E ÝÑ K, we can now de�ne dα : LR ÝÑ K by

dαpv, wq :“
`´1
ÿ

i“0
αpsi ¨ ¨ ¨ s1v, si`1si ¨ ¨ ¨ s1vq,

where w “ s`s`´1 ¨ ¨ ¨ s1. As before, a map α : E ÝÑ K is a 1-cocycle if and only if dα “ 0: that is, it sums to
zero around any loop in Γ which corresponds to a relation of the group.

Similarly to the case of general G-systems, let Z1pΓ , Kq be the set of 1-cocycles α : E ÝÑ K, let B1pΓ , Kq “
dpKVq be the subgroup of coboundaries, and for ε ą 0 and F Ď R let Z1ε,FpΓ , Kq be the subset of 1-cochains α
which satisfy

1
|V|

ÿ

vPV
|dαpv, wq| ă ε @w P F.
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Let d be the metric on TS given by

dpθ1, θ2q :“
ÿ

sPS
|θ1,s ´ θ2,s|.

Wealsowrite d for the restriction of thismetric to KS for any closed subgroup K ofT. Since SˆV is canonically
identi�edwith E, the normalizedHamming sums dpVqmay be regarded asmetrics onTE. Now the translation
of Theorems 6.1 and 6.2 into this setting implies the following.

Corollary 6.3. Let r be as in Theorem 6.1.

1. If α P Z1pΓ , Kq and dpVqpα, B1pΓ , Kqq ď r then in fact α P B1pΓ , Kq.
2. Given r1 ą 0, let ε ą 0 and F Ď R be as in Theorem 6.2. If α P Z1ε,FpΓ , Kq and dpVqpα, B1pΓ , Kqq ď r then

in fact
dpVqpα, B1pΓ , Kqq ă r1.

Proof. Suppose dβ P B1pΓ , Kq is such that dpVqpα, dβq ď r. It su�ces to prove either part with α replaced
by α ´ dβ, and so we may simplify the assumption to dpVqpα, 0q ď r. What remains is a special case of
Theorem 6.2.

Remark. The relation between ε and r1 in part 2 of this corollary is reminiscent of recent work on coboundary
expansion for simplicial complexes by Kaufman, Kazhdan and Lubotzky [10]. They prove a similar inequality
for K “ Z{2Z and for a family of graphs Γ constructed from certain Bruhat-Tits buildings. Their family of
examples ismuchmore specialized than ours, but they obtain amore quantitative result: a linear dependence
of ε on r1. They need this extra precision to deduce some other expansion properties of these complexes. It
would be interesting to know whether one can be so precise under our more general conditions. C

6.2 Proof of Theorem D

Now let G be an in�nite, �nitely generated, residually �nite group having Kazhdan’s property (T), and let e be
its identity element. Let S and R be as in the previous subsection. Such a group G has a descending sequence
G1 ą G2 ą . . . of �nite-index subgroups such that

Ş

n Gn “ teu.
For the proof of Theorem D we will need those subgroups to have two additional properties.

Lemma 6.4. There is a descending sequence pGnqně1 of �nite-index subgroups as above such that

(i) they all have nontrivial Abelianization, and
(ii) the left-multiplication actions σn : G ÝÑ SympG{Gnq form a so�c approximation to G.

Proof. First, as is standard, there is a sequence G ą H1 ą H2 ą . . . of �nite-index normal subgroups con-
verging to teu.

For each n, consider the quotient homomorphism

qn : Hn � Hn{Hn`1.

Since the target is a nontrivial group, it contains a nontrivial cyclic subgroup Kn ď Hn{Hn`1. Letting Gn :“
q´1n pKnq, we obtain Hn ě Gn ą Hn`1. Let σn be the left-multiplication action of G on G{Gn.

We can now deduce the required properties.

(i) By construction, Kn is a quotient group of Gn{rGn , Gns, so this latter is nontrivial for every n.
(ii) If left-multiplication by g P G has a �xed point in G{Gn, then it has a �xed point in the further quotient

G{Hn. Since Hn is normal in G, this requires that g P Hn. Since the subgroups Hn converge to teu, it
follows that, for any g ‰ e, the permutation σgn has no �xed points for all su�ciently large n. This
implies that pσnqně1 is a so�c approximation.
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Henceforth G, S and the sequence pGnqn given by the above lemma will be �xed. Let Γn :“ pVn , Enq be the
sequence of directed Schreier graphs on the vertex sets Vn “ G{Gn and with En de�ned by the generating set
S. These form a so�c approximation to G via the homomorphisms σn in part (ii) of the above lemma. In this
setting we often write g ¨ v in place of σgnpvq for g P G and v P Vn.

Now let us return to the Popa factor map described in the Introduction. An isomorphic factor map whose
target is a shift-system may be constructed as follows:

Φ : TG ÝÑ TSˆG : pθgqgPG ÞÑ pθsg ´ θgqsPS,gPG .

This equals φG for the map
φ : TG ÝÑ TS : θ ÞÑ pθs ´ θeqsPS .

Since φ depends on only �nitelymany coordinates inTG, it is an η-AL approximation to itself for every η ą 0,
and we may work directly with the maps φσn on model spaces.

This Φ is a homomorphism of compact Abelian groups. Since S generates G, the kernel of Φ is the di-
agonal subgroup of TG. The image of Φ is a compact subgroup of TSˆG, which we denote by Z. The image
measure Φ˚mˆG must equal the Haar measure µZ of Z. Therefore Φ is a factor map

pTG ,mˆG , Sq ÝÑ pTSˆG , µZ , Sq

which is equivalent to the Popa factor map from the Introduction.
To prove Theorem D, we will need a description of the spaces of good models for this factor system. This

begins with the following, which is an immediate consequence of the de�nitions.

Lemma 6.5. For any �nite F Ď R and ε ą 0 there is a w˚-neighbourhood O of µZ such that

ΩpO, σnq Ď Z1ε,FpΓn ,Tq @n ě 1.

If E Ď G and πE : TSˆG ÝÑ TSˆE is the coordinate projection, then πE is a group homomorphism, and
the image measure pµZqE “ pπEq˚µZ equals the Haar measure µπEpZq.

Lemma 6.6. Let E Ď G be �nite, let C Ď G be a �nite subset which is connected in CaypG, Sq and such that
C Ě E Y SE, and let n be so large that, for any v P Vn, the map

C ÝÑ Vn : g ÞÑ g ¨ v

is a graph isomorphism between the restriction of CaypG, Sq to C and the restriction of Γn to C ¨ v. Then for any
α P Z1pΓn ,Tq and any v P Vn we have

 

pγps, g ¨ vqqsPS,gPE : γ P α ` B1pΓn ,Tq
(

“ πEpZq. (6.4)

Proof. We �rst reduce to the case α “ 0. To this end, observe that if α : En ÝÑ T is a cocycle, then it has zero
sum around any based loop in Γn which corresponds to a relation of the group. The map

C ÝÑ C ¨ v : g ÞÑ g ¨ v (6.5)

de�nes an isomorphism of the restricted graphs by assumption, so any loop of Γn that is contained in C ¨ v
must arise from a relation of the group. Therefore the cocycle condition implies that α sums to zero around
any loop contained in C ¨ v, and hence

pα|Sˆg¨vqgPE “ ppdβq|Sˆg¨vqgPE

for some β P TC¨v obtained by simply summing along paths from some distinguished basepoint in C: all of C
can be reached this way because C is connected. Extending β arbitrarily to a member of TVn , this shows that



The Geometry of Model Spaces for Probability-Preserving Actions of So�c Groups | 183

the left-hand side of (6.4) does not depend on α: for every α that left-hand side is a coset of a homomorphic
image of B1pΓn ,Tq, and we have just seen that any two of these cosets overlap, hence are equal.

Now suppose that α “ 0. We will prove two separate inclusions.
First, if θ P TG and

γ “ πEpΦpθqq “ pθsg ´ θgqsPS,gPE P πEpZq,

then γ is also equal to ppdβq|Sˆg¨vqgPE for any choice of β P TVn satisfying

βg¨v “ θg @g P E.

Such a choice exists because C Ě E and the map (6.5) is injective.
On the other hand, if β P TVn , then the reverse of this argument produces some θ P TG such that βg¨v “ θg

for all g P E.

Lemma 6.7. For any w˚-neighbourhood O of µZ , we have

inf
αPZ1pΓn ,Tq

ppφσn q˚mˆVn q
`

ΩpO, σnq ´ α
˘

ÝÑ 1

as n ÝÑ 8.

Proof. For α P Z1pΓn ,Tq, let
Rα : TVn ÝÑ TVn : β ÞÑ β ` α

be the corresponding rotation. We need to show that the image measures

pRαn q˚pφσn q˚mˆVn

are asymptotically supported on ΩpO, σnq as n ÝÑ 8 for any sequence αn P Z1pΓn ,Tq. We will deduce this
by showing that

pRαn q˚pφσn q˚mˆVn
q
ÝÑ µZ ,

where this refers to quenched convergence as in [1, De�nition 5.3].
Since pTSˆG , µZ , Sq is a factor of a Bernoulli shift, it is ergodic. Therefore by [1, Corollary 5.7] quenched

convergence will follow if we show that

pRαn q˚pφσn q˚mˆVn
lw˚
ÝÑ µZ (local weak˚ convergence).

The measure pRαn q˚pφσn q˚mˆVn is equal to the Haar measure on the coset

B1pΓn ,Tq ` αn .

The result now follows from Lemma 6.6. According to that lemma, for any �nite E Ď G, the projection of this
coset to the directed edges which emanate from E ¨ v is simply a copy of πEpZq, provided n is large enough
depending on E. For such n, the projection of pRαn q˚pφσn q˚mˆVn to E ¨ v is therefore equal to µπEpZq “ pµZqE.

Proof of Theorem D. Let r be as in Theorem 6.1, let δ :“ r{4, and let ε ą 0 and F Ď R be given by part 2 of
Corollary 6.3 for r1 :“ r{10. Finally, let O be a w˚-neighbourhood of µZ as given by Lemma 6.5 for this F and
ε.

For any w˚-neighbourhood U of µZ, Lemma 6.7 gives that

ΩpU, σnq X pα ` B1pΓn ,Tqq ‰ H (6.6)

for any α P Z1pΓn ,Tq, once n is su�ciently large.
Next, for each n, we may identify G ñ TG{Gn as the induction to G of the trivial action of Gn on T. Hence

Shapiro’s Lemma [15, Theorem II.3.7] gives

H1
pG,TG{Gn q – H1

pGn ,Tq “ HompGn ,Tq “
`

Gn{rGn , Gns
˘^
‰ 0,
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where the last conclusion is the point at whichwe use part (i) of Lemma 6.4. Therefore for each n there ismore
than one coset of B1pΓn ,Tq in Z1pΓn ,Tq.

Combining this with (6.6), it follows that we may choose sequences

αn P B1pΓn ,Tq and α1n P Z1pΓn ,TqzB1pΓn ,Tq

satisfying
Pσnαn , P

σn
α1n

weak˚
ÝÑ µZ as n ÝÑ 8.

By part 1 of Corollary 6.3, we must have that

dpVnqpα1n , B1pΓn ,Tqq ě r

for all su�ciently large n.
Now suppose, for the sake of contradiction, that there were δ-paths

αn “ αn,1, αn,2, . . . , αn,`n “ α
1
n

contained inΩpO, σnq for arbitrarily large n. By Lemma6.5, theywould also be contained in Z1ε,FpΓn ,Tq. Since
δ “ r{4, there would have to be some k P t2, . . . , `n ´ 1u for which

r1 ă r{4 ă dpVnqpαn,k , B1pΓn ,Tqq ă 3r{4.

Since αn,k P Z1ε,FpΓn ,Tq, this would contradict part 2 of Corollary 6.3.

6.3 Complemented factors

The deduction of CorollaryD2 rests on the following theoremabout a generalmetricG-process pXG , µ, S, dXq,
which may be of independent interest. It is expressed in terms of a sequence of measures on the spaces XVn

which ‘doubly-quenched converge’ to µ P ProbSpXGq over Σ, denoted by µn dq
ÝÑ µ. This property is introduced

in [1, Subsection 5.2]. By [1, Corollary 5.18], the existence of such a sequence µn is an isomorphism-invariant
of the process which does not depend on the metric dX. We do not recall the de�nition here, but refer the
reader to that reference for full details.

Theorem 6.8. Suppose there exist µn P ProbpXVn q such that µn dq
ÝÑ µ rel Σ. Then any complemented factor

map of pXG , µ, Sq is model-surjective rel Σ.
In particular, any complemented factor map of a Bernoulli shift is model-surjective relative to any so�c

approximation of G.

Proof. Suppose that Φ : pXG , µ, S, dXq ÝÑ pYG , ν, S, dYq is a complemented factor map, so there is another
factor map Ψ : pXG , µ, S, dXq ÝÑ pZG , θ, S, dZq such that the combined map

pΦ, Ψq : pXG , µ, Sq ÝÑ pYG ˆ ZG , ν ˆ θ, Sq

is a measure-theoretic isomorphism.
By [1, Proposition 5.16], there are also measures θn P ProbpZVn q such that θn dq

ÝÑ θ rel Σ: they can be
obtained as images of the measures µn. Using these, [1, Corollary 5.13] gives that the coordinate-projection
factor map

Π : pYG ˆ ZG , ν ˆ θ, Sq ÝÑ pYG , ν, Sq

ismodel-surjective rel Σ. This conclusion iswritten in termsofw˚-neighbourhoods in [1], but it is easily turned
into condition 2 of Lemma 3.4. Therefore the factor map

Φ “ Π ˝ pΦ, Ψq



The Geometry of Model Spaces for Probability-Preserving Actions of So�c Groups | 185

is a composition of a factormapwhich ismodel-surjective rel Σ and an isomorphism, soΦ itself is alsomodel-
surjective rel Σ by Propositions 3.5 and 3.6.

This argument applies whenever pXG , µ, Sq is a Bernoulli shift and Σ is a so�c approximation, because
then the corresponding product measures on the spaces XVn always doubly-quenched converge to µ [1,
Lemma 5.11].

Proof of Corollary D2. This follows at once from the combination of Theorems A, C, D and 6.8.

Remark. It is easy to prove that the Popa factor map itself is not complemented for any in�nite discrete group
G. This is because it is a relatively compact extension, so if it had a complementing factor Ξ : pTG ,mˆG , Sq ÝÑ
pZ, θ, Rq then pZ, θ, Rq would have to be a compact system, but the original Bernoulli shift pTG ,mˆG , Sq has
no compact factors.

Corollary D2 is much stronger: it prohibits the Popa factor system from appearing as a complemented
factor of any other Bernoulli system in any way. This holds only for certain special groups G. By contrast, for
amenable G the Popa factor is always isomorphic to another copy of the Bernoulli shift by the general theory
of [17], and the same holds if G is a free group by an easy calculation. C
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