Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 20, 2016

Convex Hull Property and Exclosure Theorems for H-Minimal Hypersurfaces in Carnot Groups

  • Francescopaolo Montefalcone


In this paper, we generalize to sub-Riemannian Carnot groups some classical results in the theory of minimal submanifolds. Our main results are for step 2 Carnot groups. In this case, we will prove the convex hull property and some “exclosure theorems” for H-minimal hypersurfaces of class C2 satisfying a Hörmander-type condition.


[1] L. Ambrosio, F. Serra Cassano, D. Vittone, Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16, no. 2, 187–232 (2006). Search in Google Scholar

[2] Z.M. Balogh, Size of characteristic sets and functions with prescribed gradient, J. Reine Angew. Math. 564 (2003). 10.1515/crll.2003.094Search in Google Scholar

[3] Z.M. Balogh, C. Pintea, H. Rohner, Size of tangencies to non-involutive distributions, Indiana Univ. Math. J. 60 , no. 6, 2061-2092 (2011). Search in Google Scholar

[4] V. Barone Adesi, F. Serra Cassano, D.Vittone, The Bernstein problem for intrinsic graphs in Heisenberg groups and calibrations, Calc. Var. Partial Differential Equations 30, no. 1, 17-49 (2007). Search in Google Scholar

[5] M. Berger, P. Gauduchon, E.Mazet, “Le spectre d’une variété riemannienne”, Lecture Notes inMathematics, 194, Springer, Berlin-New York, 1971. 10.1007/BFb0064643Search in Google Scholar

[6] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, “Stratified Lie Groups and Potential Theory for their Sub-Laplacians”, Springer Monographs in Mathematics, 26. New York, NY: Springer-Verlag, 800 pages (2007). Search in Google Scholar

[7] A. Bonfiglioli, F. Uguzzoni, Maximum principle and propagation for intrinsicly regular solutions of differential inequalities structured on vector fields , J. Math. Anal. Appl., 322, 886–900 (2006). Search in Google Scholar

[8] J.M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19, vol. 1, 277-304 (1969). Search in Google Scholar

[9] M. Bramanti, L. Brandolini, M. Pedroni , Basic properties of nonsmooth Hörmander’s vector fields and Poincaré’s inequality, Forum Mathematicum, Vol. 25, Issue 4, 703–769 (2013). Search in Google Scholar

[10] L. Capogna, G. Citti, M. Manfredini, Smoothness of Lipschitz minimal intrinsic graphs in Heisenberg groups Hn, n > 1, Indiana University Mathematics Journal (2008). Search in Google Scholar

[11] Y. Canzani, Analysis on manifolds via the Laplacian, Lecture Notes available at: canzani/docs/Laplacian.pdf. Search in Google Scholar

[12] L. Capogna, D. Danielli, S. D. Pauls, J. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progr. Math., 259. Birkhäuser, Basel, 2007. Search in Google Scholar

[13] J.J Cheng, J.F. Hwang, Properly embedded and immersed minimal surfaces in the Heisenberg group, Bull. Austral. Math. Soc., 70 (3), 507–520 (2004). 10.1017/S0004972700034766Search in Google Scholar

[14] J.J Cheng, J.F. Hwang, A. Malchiodi, P. Yang, Minimal surfaces in pseudohermitian geometry, Ann. Sc. Norm. Sup. Pisa Cl. Sci., 5, IV, 129-179 (2005). 10.2422/2036-2145.2005.1.05Search in Google Scholar

[15] , A Codazzi-like equation and the singular set for C1 smooth surfaces in the Heisenberg group, J. Reine Angew.Math., 671:131–198 (2012). 10.1515/CRELLE.2011.159Search in Google Scholar

[16] J.J Cheng, J.F. Hwang, P. Yang, Regularity of C1 smooth surfaces with prescribed p-mean curvature in the Heisenberg group, Math. Ann. 344, No. 1, 1-35 (2009). Search in Google Scholar

[17] T.H. Colding W.P. Minicozzi II, “A course in minimal surfaces”, Graduate Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI (2011). 10.1090/gsm/121Search in Google Scholar

[18] M.G. Cowling, A. Ottazzi, Conformal maps of Carnot groups, Ann. Acad. Sci. Fenn. Math. 40, 203-213 (2015). Search in Google Scholar

[19] D. Danielli, N. Garofalo, D.M. Nhieu, Sub-Riemannian Calculus on Hypersurfaces in Carnot groups, Adv.Math. 215, no. 1, pp. 292-378 (2007). Search in Google Scholar

[20] U. Dierkes, Maximum principles and nonexistence results for minimal submanifolds, Manuscr. Math. 69, 203-218 (1990). Search in Google Scholar

[21] U. Dierkes, S. Hildebrandt, A. Kuster, O. Wohlrab, “Minimal Surfaces I: Boundary Value Problems”, Grundlehren derMathematischen Wissenschaften, Vol. 295, Springer-Verlag, Berlin (1992). Search in Google Scholar

[22] E. Feleqi, F. Rampazzo, Integral representations for bracket-generating multi-flows, Discrete Contin. Dyn. Syst. Ser. A., 35, No. 9, 4345–4366 (2015). Search in Google Scholar

[23] B. Franchi, R. Serapioni, F.S. Cassano, Rectifiability and Perimeter in the Heisenberg Group, Math. Ann., 321 (2001). 10.1007/s002080100228Search in Google Scholar

[24] , Regular submanifolds, graphs and area formula in Heisenberg groups., Adv. Math. 211, no. 1 (2007). 10.1016/j.aim.2006.07.015Search in Google Scholar

[25] H. Federer, “Geometric Measure Theory”, Springer Verlag (1969). Search in Google Scholar

[26] Z. Ge, Betti numbers, characteristic classes and sub-Riemannian geometry, Illinois Jour. of Math., 36, no. 3 (1992). 10.1215/ijm/1255987416Search in Google Scholar

[27] U. Hamenstädt, Some regularity theorems for Carnot-Carathéodory metrics, J. Differential Geom. 32, no. 3, 819–850 (1990). Search in Google Scholar

[28] S. Hildebrandt, Maximum principles for minimal surfaces and for surfaces of continuous mean curvature, Math. Z. 128, 253-269 (1972). Search in Google Scholar

[29] R.H. Hladky, S.D. Pauls, Constant mean curvature surfaces in sub-Riemannian geometry, J. Diff. Geom. 79, no. 1 (2008). 10.4310/jdg/1207834659Search in Google Scholar

[30] A. Hurtado, M. Ritoré, C. Rosales, The classification of complete stable area-stationary surfaces in the Heisenberg group, Adv. Math. 224, no. 2, 561-600 (2010). Search in Google Scholar

[31] M. Karmanova, S. K. Vodopyanov, Geometry of Carnot-Carathéodory Spaces, Differentiability, Coarea and Area Formulas, Analysis and Mathematical Physics. Trends in Mathematics, Birkhauser, Basel, 233-335 (2009). 10.1007/978-3-7643-9906-1_14Search in Google Scholar

[32] J.M. Lee, “ Introduction to Smooth Manifolds”, Springer Verlag (2003). 10.1007/978-0-387-21752-9Search in Google Scholar

[33] E. Le Donne, A. Ottazzi, Isometries between open sets of Carnot groups and global isometries of homogeneous manifolds, JGA, DOI: 10.1007/s12220-014 9552-8. Search in Google Scholar

[34] V. Magnani “Elements of Geometric Measure Theory on sub-Riemannian groups”, PHD Thesis, SNS, Pisa, (2002). Search in Google Scholar

[35] J.W. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. Math. 21, pp. 293-329 (1976). Search in Google Scholar

[36] A. Montanari, D. Morbidelli, Nonsmooth Hormander vector fields and their control balls, Trans. Amer. Math. Soc. 364, (2012), 2339-2375, Search in Google Scholar

[37] F. Montefalcone, Hypersurfaces and variational formulas in sub-Riemannian Carnot groups, JMPA, 87 (2007). 10.1016/j.matpur.2007.01.009Search in Google Scholar

[38] , Stable H-minimal hypersurfaces, J. Geom. Anal. 25, 820–870 (2015). Search in Google Scholar

[39] R. Montgomery, “A Tour of Subriemannian Geometries, Their Geodesics and Applications”, AMS, Math. Surveys and Monographs, 91 (2002). Search in Google Scholar

[40] R. Osserman, “A survey of Minimal Surfaces”, Dover Publications, INC. Mineola, New York (1969). Search in Google Scholar

[41] , The convex hull property of immersed manifolds, J. Diff. Geom., 6, 267-270 (1971). 10.4310/jdg/1214430410Search in Google Scholar

[42] S.D. Pauls, Minimal surfaces in the Heisenberg group, Geom. Dedicata, 104 201-231 (2004). 10.1023/B:GEOM.0000022861.52942.98Search in Google Scholar

[43] P. Pansu, “Gèometrie du Group d’Heisenberg”, Thèse pour le titre de Docteur, 3ème cycle, Université Paris VII (1982). Search in Google Scholar

[44] F. Rampazzo, H. J. Sussmann, Set-valued differential and a nonsmooth version of Chow’s theorem, Proceedings of the 40th IEEE Conference on Decision and Control; Orlando, Florida, 2001. Search in Google Scholar

[45] M. Ritoré, Examples of area-minimizing surfaces in the sub-Riemannian Heisenberg groupH1 with low regularity, Calc. Var. Partial Differ. Equ. 34, No. 2, 179-192 (2009). 10.1007/s00526-008-0181-6Search in Google Scholar

[46] M. Ritoré, C. Rosales, Area stationary surfaces in the Heisenberg group H1, Adv. Math. 219, No. 2, pp. 633-671 (2008). Search in Google Scholar

[47] M. Spivak, “A comprehensive introduction to differential geometry”, Vol.4, Publish or Perish (1999). Search in Google Scholar

[48] E.M. Stein, “Harmonic Analysis”, Princeton University Press (1993). Search in Google Scholar

[49] V.S. Varadarajan, Lie groups, Lie algebras and their representations, Reprint of the 1974 edition. Graduate Texts in Mathematics. 102. New York, NY: Springer. xiii, 430 pages (1984). 10.1007/978-1-4612-1126-6Search in Google Scholar

Received: 2016-11-9
Accepted: 2016-8-4
Published Online: 2016-9-20

© 2016 Francescopaolo Montefalcone

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 21.3.2023 from
Scroll Up Arrow