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Abstract: Let X be a set. Let K(x, y) > 0 be a measure of the affinity between the data points x and y. We prove
that K has the structure of a Newtonian potential K(x, y) = ¢(d(x, y)) with ¢ decreasing and d a quasi-metric
on X under two mild conditions on K. The first is that the affinity of each x to itself is infinite and that for
x # y the affinity is positive and finite. The second is a quantitative transitivity; if the affinity between x and y
is larger than A > 0 and the affinity of y and z is also larger than A, then the affinity between x and z is larger
than v(A). The function v is concave, increasing, continuous from R* onto R* with v(A) < A for every A > 0.
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1 Introduction

The notion of affinity, when applied to a data set X involves an empirical construction of a real valued kernel
K defined on X x X reflecting some similarity of any two data points x and y in X, given by particular features
shared by x and y. Of course, since the features to be considered relevant depend on the particular situation
and even on the points of view of the observer, the notion of affinity becomes healthily wide. Even so, some
basic properties seen to be shared by such diversity of affinity kernels. These properties are the symmetry,
K(x,y) = K(y, x), and the positive definiteness, i.e., for every finite subset F of X the matrix (K(x,y) : x €
F,y € F)is positive semi-definite. Precisely, the inequality Zwe réxéyK(x, y) = 0 holds for every F C X with
#(F) < oo and every choice of &, &, € R. Of course the most elementary, but useless, affinity is a diagonal
kernel, K(x, x) > 0, K(x, y) = 0 for x # y. On the other hand, several realistic models contain a natural weak
transitivity which can be seen as a deconcentration of the affinity outside the diagonal of X x X. As a toy
example, assume that x and y are two individuals, in a homogeneous cultural context, and K(x, y) counts
the number of common watched movies by x and y during the last decade. Usually K(x, y) is much smaller
than the total number of available movies in that period, then K(x, y) reflects that the individuals x and y
share some criteria for their film genres choice. On the other hand, if z is a third individual in the same social
group that shares with y some criteria for their film genres choice, then x and z must share some weakened
preferences. For example, if K(x, y) > 100 and K(y, z) > 100 then K(x, z) > 50. What is remarkable is that
these type of transitivity is satisfied by some very classical kernels as is the Newtonian potential. Before going
to this central point in our approach, let us briefly review some particular kernel which have been extensively

used. For example in the detection of similarity of documents, the cosine affinity kernel K(x, y) = %

becomes natural. Here x and y are vectors in a data set X contained in a Hilbert space H (for example R, N
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large) and (x, y) is the scalar product in H. At a first glance the kernel K(x, y) does not depend of a distance
between x and y. Nevertheless, after the projection of the data set X on the unit sphere {||x|| = 1} of H, we
have that with & = HXTH andn = ﬁ, K&, n) =&, n) =@(|€-n|) with o(t) = 1 - g In other words, affinity
can be written in terms of a decreasing function of the Euclidean distance, when restricted to the unit sphere
of H. Other usual types of affinity kernels are explicitly built in terms of known metrics, such is the case of the
so called RBF-kernel (radial basis function) given by the bell Kp(x, y) = e RIYI” Here R becomes large if we
expect that the affinity between x and y becomes more demanding. On the other hand since the preservation
of the Markov property along the family Ky requires normalization, for R large we have a Gauss-Weiertrass
kernel with variance 02 = }. See [4].

Let us observe that if N(x,y) = X%‘ is the Newtonian potential for x and y in R3, then the triangle in-
equality |x — z| < [x—y| + |y — z| shows that if for A > 0 we have N(x,y) > A and N(y, z) > A, then we also
have N(x, z) > %, that, with A = 100, agrees with our heuristic transitivity for the example of movies prefer-
ences. In some sense, attending to the historical development of the ideas in classical mechanics, the data
obtained by Tycho Brahe and organized by Johannes Kepler was finally understood (learnt?) by Isaac Newton
who, after projection on space by elimination of the time variable (as in the case of the cosine affinity) gave
such a simple attraction or affinity kernel K(x, y) = N(x, y) = ﬁ as the basic descriptor the gravitational
field. In this paper we start by the heuristic consideration of affinity as attraction. And we search for neces-
sary and sufficient conditions on a positive and symmetric kernel K(x, y) defined on a set X in such a way
that K(x, y) = ¢(d(x, y)) (as N(x, y) is the composition of ¢(s) = % and d(x, y) = |x - y|) with ¢ decreasing,
¢(0) = +o0, @(+o0) = 0 and d a quasi-distance on X.

In [1] the authors give necessary and sufficient conditions on families of subsets of a set X in such a way
that these subsets are close to be balls of a quasi-metric on X. A similar situation, in terms of families of
subsets of X x X is considered here, regarding the basic properties of quasi-metric stripes around the diagonal
of X x X. What is more important is that this characterization of quasi-metric bands can be used to provide a
structure result of some affinity kernels.

Let X be a set. Let K(x, y) be a nonnegative number measuring the affinity between the two data points
x and y. We shall consider some basic properties of affinity which will be sufficient to obtain the Newtonian
potential type structure for K. Symmetry; affinity is a symmetric relation on X x X (K(x, y) = K(y, x) for every
x, y € X). Positivity; there is positive affinity between any couple of data points x and y (K(x, y) = 0O for
every x, y € X). Diagonal singularity; the self affinity is unimprovable. Precisely, the affinity of each data
point x with itself is +oo (K(x, x) = +oo for every x) but for x # y the affinity is finite (K(x, y) < oo for x # y).
Quantitative Transitivity; if the affinity between the data points x and y is larger than A > 0 and the affinity
between y and z is larger than A then the affinity between the points x and z is larger than v(A). Here vis a
nonnegative, concave, increasing and continuous function defined on R* onto R* such that v(A) < A.

A quasi-metric in X is a nonnegative symmetric function d defined on X x X which vanishes only on the
diagonal A of X x X and satisfies a weak form of the triangle inequality, there exists a constant 7 (> 1) such
that the inequality d(x, z) < (d(x, y) + d(y, z)) holds for every x, y and z in X.

The main result of this paper can be stated as follows.

Theorem 1.1. Let X be a set. Let K : X x X — R* be a symmetric function satisfying the singularity and the
quantitative transitivity conditions. Then there exist a decreasing and continuous function ¢ defined in R* and
a quasi-metric d on X such that

K(x,y) = p(d(x,y)).

Moreover, d(x, y) = h(x, y)p(x, y) with p a metric on X and h a symmetric function such that for some constants
0 < ¢1 < ¢y < oo satisfies ¢y < h(x, y) < ¢, forevery x and y in X.

At this point, as one of our referees let us observe, it is important to notice that our hypothesis on K can be

rewritten in terms of le) =: [x, y] by saying, as in Chittenden [3] § 12, page 26, that [x, y] is a uniformly
regular écart. That is, [x, y] = 0 if and only if x = y and there is a function f(A) = ﬁ such that [x,y] < A

and [z,y] < A implies [x, z] < f(A). In [3] it is shown that the above conditions on [x, z] are sufficient for
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metrizability of the underlying space. In some sense our result provides a quantitative structural version of
this metrization theorem when j% is nonnegative, concave, increasing and continuous function defined on R*
with f(A) > % Moreover we prove a Newtonian potential type structure for ﬁ

The deepest results on the structure of quasi-metrics are due to Macias and Segovia and are contained
in [8]. See also [2]. The most significant for our purposes is the fact that each quasi-metric is equivalent to a
power of a metric. In other words, given a quasi-metric d on X with constant 7, there exist > 1 and a metric

p on X such that for some positive constants a; and a, the inequalities
ald(Xy Y) < Pﬁ(X: )’) < aZd(X9 Y)

hold for every x and y in X. Actually the proof is based in Frink’s lemma of metrization of uniform structures
with a countable basis ([6], [7]).

The rest of the paper is organized in the following way. Section 2 gives a characterization of quasi-metrics
on a set in terms of properties of the family of stripes in X x X induced by the quasi-metric. Section 3 contains
the construction of the monotonic profile. In Section 4 we prove the main result.

2 Quasi-metrics and families of stripes around the diagonal

Let X be a set. The composition of two subsets U and V of X x X is given by Vo U = {(x,z) € X x X :
there exists y € X such that (x, y) € U and (y, z) € V}. Asubset U in XxX is said to be symmetricif (x, y) € U
ifand only if (y, x) € U. Set A to denote the diagonalin X x X, i.e. A = {(x, xX):xeX } When a quasi-metric §
with constant 7 is given in X, it is easy to check that the one parameter family V(r) = {(x,y) € XxX : 6(x, y) <
r}; r > 0, of stripes around the diagonal of X x X, satisfies

(S1) each V(r) is symmetric;

(S2) A C V(r), forevery r > 0;

(S3) V(r1) CV(ry),for0<rq <ry;

(S4) UpsoV(r) = X x X;

(85) NpsoV(r) C 45

(S6) there exists T > 1 such that V(r) o V(r) C V(Tr), for every r > 0.

Actually, the constant T in (S6) can be taken to be the triangle constant 7 of 6. Set P(X x X) to denote the set
of subsets of X x X.

Theorem 2.1. LetV : R* — P(X x X) be a one parameter family of the subsets of X x X that satisfies (S1) to (S6)
above. Then the function 6 defined on X x X by 6(x,y) = inf{r > 0 : (x,y) € V(r)} is a quasi-metric on X with
T < T. Moreover, for each ~ > 0, we have

Vs(r) € V(r) € V(1 +~)1) (2.1)
hold for every r > 0, where V4(s) = {(x,y) € Xx X : 6(x,y) <s}.

Proof. From (54) for the family V we see that 6(x, y) is well defined as a nonnegative real number. The sym-
metry of § follows from (S1). The fact that § vanishes on the diagonal A follows from A C ;.o V(r) which
is contained in (S2). Now, if (x,y) € X x X and 6(x, y) = 0, then, from (S3) for each r > 0, (x,y) € V(r).
Now, from (S5) we necessarily have that (x,y) € A or, in other words x = y. Let us check that § satisfies
a triangle inequality. Let x, y and z be three points in X. Let € > 0. Take r; > 0 and r, > O such that
r1 < 8x,y)+e& 1, < 8(y,2) +¢ (x,y) € V(ry) and (y,2) € V(rp). From (S6) with " = sup{ry,r,}, we
have (x, z) € V(r2) o V(r1) C V(") o V(r") C V(Tr"). Hence 6(x, z) < Tr" < T(r1 +12) < T(8(x, y) + 8(y, 2)) + 2¢T
and we get the triangle inequality with T = T. Notice first that from (S3), Vs(r) C V(r) for every r > 0. Take
now (x, y) € V(r), then 6(x, y) < r < (1 + 7)r, so that V(r) C Vs((1 + )r) for every v > 0 and every r > 0. O
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The next result follows from the above and the metrization theorem of quasi-metric spaces proved in [8]
as an application of Frink’s Lemma on metrizability of uniform spaces with countable bases.

Theorem 2.2. Let 'V and 6 be as in Theorem 2.1. Then, there exist a constant 8 = 1 and a metric p on X such
that

() 47P6 < pﬁ < 28s;
(i) Vs (l,%) C V(r) € V(2P 1) where Vs (r) = {(x, ) € X x X : pP(x, y) < r}.

Proof. Following the proof of Theorem 2 on page 261 in [8] take a < 1 such that (3T?)% = 2 and 8 = % > 1.
With p the metric provided by the metrization theorem for uniform spaces with countable bases, we have that

4p(x,y) 2 8(x, y)* = 1p(x,y). So that

1
ES(X’ Y) Sp(Xy )/)ﬁ < ZBS(X’ }/),

and (ii) follow from these inequalities and (2.1) with v = 1. O

3 Building the basic profile shape

The classical inverse proportionality to the square of the distance between the two bodies for the gravita-
tion field, translates into inverse proportionality to the distance for the potential. That is ¢(r) = % for the
gravitational potential.

This section is devoted to the construction of the basic shapes of the profiles that allow the Newtonian
representation of the kernels. This construction requires to solve a functional inequality involving the func-
tion v that controls the quantitative transitive property of K.

Proposition 3.1. Let v be a concave, continuous, nonnegative and increasing function defined on R* onto R*
such that v(A) < A for every A > 0. Then, given M > 1, there exists a continuous, decreasing and convex function
Y defined on R* with (1) = 1 such that the inequality

YD) = Mp(A) (3.1
holds for every A > 0.

Proof. Set Ao = 1, A; = v(1) and A_; = v !(1). Notice that A; < 1and A_; > 1.In fact, ;; = v(1) < 1
and1 = v'i(v(1)) = v'1(A1) < v'1(1) = A;. Setfor k € N, Ay = v(A;_;) and A_; = v"1(A_,;). Notice that
Ay decreases as k — oo and increases when k — —oo. The continuity of v and the property v(1) < A for
every positive A imply that A, — 0 as k — oo and A, — oo as k — —oo monotonically. This basic sequence
{Ag : k € Z} allows to construct a function ) in the following way. Set Y(A,) = MX, k € Zand for A € [Ag,q, A¢]
define ¥ (A) by linear interpolation. It is clear that i is continuous, decreasing, (0) = +oo, P(e0) = 0,
(1) = P(Ap) = M° = 1 and that 1) is convex. We only have to check that i solves inequality (3.1). On the
sequence {A; : k € Z}, (3.1) becomes an equality. In fact, p(v(Ay)) = P(Axsq) = M1 = MM* = Mp(A,).
Let us now take A € (44,1, A) for k € Z. For such A, 1(A) satisfies
Mk+1 _ Mk _ Mk+1 _ l/)(}l) . (3.2)
Ak = Akia A= Agia

On the other hand, since A;,1 < A < A;, we have that Ay, = v(Ax,1) < V(D) < v(A;) = Ai,q. Hence Y(v(Q))
satisfies

Mk+2 _ Mk+1 _ Mk+2 _ l,b(v(/\)) (3 3)
Aks1 = Aia2 V) = A '

From (3.2) and (3.3) we get
A- Ak+1

A) = MY - MR- 1) 2Dk
v ( )/\k—/\ku
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and

Yv@) =M <M"*1 - M*(Mm - 1)%) .
Ak+1 - Ak+2

Now, since v is concave, we have for A;,; < A < A that

V(D) - V(A1) N v(A) - V(A1)
A= A1 A=A

hence, P(v(1)) < Myp(A). O

The basic shapes for the profiles ¢ in our main result will be given as composition of the inverse n of i with
power laws.

4 Proof of the main result

Let us start by rewriting, formally, the properties of symmetry, positivity, singularity and transitivity of a data
affinity kernel K(x, y) defined on the set X x X. Let K : X x X — R such that

(K1) K(x,y)=K(y, x), for every x and y in X;

(K2) K(x,y) > 0, for every x and y in X;

(K3) K(x,y) = +ocif and only if x = y;

(K4) there exists a continuous, concave, increasing and nonnegative function v defined on R* onto R*, with
v(A) < A, A > 0, such that K(x, z) > v(A) whenever there exists y € X with K(x, y) > A and K(y, z) > A, for
every A > 0.

With these properties, Theorem 1.1 can be restated as follows.

Theorem 4.1. Let X be a set. Let K be a kernel on X x X satisfying properties(K1) to (K4). Then, there exist a
metric p on X, a real number B = 1, a function h(x, y) defined on X x X with 27 YB < p(x, y) < 4 and a function
¢ : R* — R* continuous, decreasing with ¢(0") = +o0 and ¢(co) = 0, such that

K(x,y) = o(h(x, y)px, y)).

Proof. Let v be the function provided by (K4). Let i be given by Proposition 3.1 with this function v, and
M = 2. Hence (v(A)) < 2th(A) for every A > 0. Take p = p ' and V : R* — P(X x X) given by

V() = Eppy = {(x, y) : K(x, y) > n()}.

Let is check that V satisfies properties (S1) to (S6) in Section 2 with constant T = 2 (= M). From (K1) we see
that each E; is symmetric, in particular V(r) is symmetric for every r > 0. Since K(x, x) = +oo, from (K3), we
have that A C E,,) = V(r) for r > 0. In order to check (S3) take O < r; < r, < oo. Hence n(r1) > n(r,), so that
K(x,y) > n(ry) implies K(x, y) > n(r,). Or, in other words Epiry) C Epgry- OF V(r1) C V(r,). The positivity (K2)
of K(x, y) shows (S4). Property (S5) of V follows from (S3). To prove (S6) for V, take r > 0.1If (x, z) € V(r)oV(r) =
Ep o Eqmy then there exists y € X such that K(x, y) > n(r) and K(y, z) > n(r). From (K4), K(x, z) > v(n(r)).
Now applying (3.1) with A = ~1(r) we get K(x, z) > vy~ 1(r)) = n(2r), or (x,2) € Eyon = V(2r). Hence (S6)
for V holds with T = 2. We can, then apply the results of Section 2. First to produce a quasi-metric § as in
Theorem 2.1 and then to provide the metric p and the exponent f given in Theorem 2.2. Thus, for every r > 0,
Vp/; ([{ﬁ) C V() = Eym C Vpﬁ(zﬁ”r), where p is a metric in X and, since T can be taken to be equal to 2,

B =log, 12 works. The above inclusions, taking s = r/E  are equivalent to
p<stc{wor>shc{p<2tilhs} (4.1)

for every s > 0. Let x and y be two different points in X. Since 0 < K(x,y) < cosois (i o K)'A(x, y). There
exists, then, a unique j € Z (j = j(x, y)) such that 2/ < (i o K)YA(x, y) < 27*1, By the second inclusion in (4.1)
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we see that p(x, y) < 282 < 2Y/B() o K)'/B(x, y). On the other hand, since (i o K)/A(x, y) < 2/*1, from the
first inclusion in (4.1) we necessarily have that p(x, y) > 2“ +@Wo K)YB(x, y). Hence for x # y we have

Z(l’b o K)V/E <p< 21/'8(1/) o K)VE,

Set h(x,y) = (’l/;‘()f,)yl) for x # y and h(x, x) = 1. Then 21,/3 < h < 4and K(x,y) = lp‘l((h(x,y)p(x,y))ﬁ) =

p(h(x, y)p(x, y)) with o(r) = Y1 () = n(rP). O

Notice that since h is symmetric and bounded above and below by positive constants the function
d(x,y) = h(x,y)p(x,y) is a quasi-metric. But actually d is better than a general quasi-metric since its tri-
angular inequality constant can be taken to be independent of the length of chains. Precisely, d(x1, xm) <
22BN d(g, Xja1)-

Let us observe also that Newtonian type power laws are obtained when v(A) = aA for a < 1. In fact, with
1Og 2 <0,9() = r™ solves the equation (aA)™ = 2A™. Hence ¢ becomes also a power law.
Let us finally state and prove that the conditions on K are necessary to have a Newtonian structure for K.

m=

Proposition 4.2. Let (X, d) be a quasi-metric space with triangular constant 1. Let ¢ be a positive function
defined on R* such that, ¢ is C*(R"), convex, decreasing, p(0*) = +oo and p(+o0) = 0. Let K : X x X — R* be
given by K(x, y) = p(d(x, y)). Then there exists a positive concave function v defined on R* increasing, v(0) = 0,
V(+o0) = +oo such that if K(x,z) > A > 0 and K(z,y) > A for some z € X, we have that K(x, y) > v(A) with
v(A) = (219 1(A)). Moreover, v(A) < A for every A > 0

Proof. Let x, y, and z be as in the statement. In particular, d(x, z) < ¢ 1(A) and d(z, y) < ¢ *(A). Hence
d(x,y) < 1(d(x, z) + d(z, ) < 219 *(A).

So that K(x, y) > (219 1(A)) = v(A). Let us check that the function v satisfies the required properties. Notice
first that v(A) < A follows directly from the decreasing of ¢. The derivative of v is given by

V) = ¢' QT ) s e _1(/0)

Hence v/ > 0 for every A > 0 and v is increasing. The facts that v(0") = 0 and v(+oc) = +co follows from
¢(0") = +o0 and @(+o0) = 0. Let us finally check the concavity of v. Taking derivative with respect to A in the
above formula for v/(A) we see that

”(zw‘l(/\))zr @ (2T<p'1(/1))(f} ((Z) 11(%)))
[’ (@~1(A)]2
(p”(S)

Sets = ¢ (), hence the sign of v is defined by the sign of 27¢" (275)—¢'(215) 6]
we see that

V”(A) —

.Since [¢'(215)¢@’(s)]’ 2 0

219" (215)¢'(s) - @' (215)9" (s) = [@' (215)’(5)] - 29" (s)¢p’ (275)
>-2¢"(s)p’(21s) > 0. O
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