
Open Access. © 2018 Hugo Aimar and Ivana Gómez, published by De Gruyter. This work is licensed under the Creative Commons
Attribution-Non-Commercial-NoDerivs 4.0 License.

Anal. Geom. Metr. Spaces 2018; 6:89–95

Research Article Open Access

Hugo Aimar and Ivana Gómez*

A�nity and Distance. On the Newtonian
Structure of Some Data Kernels
https://doi.org/10.1515/agms-2018-0005
Received August 15, 2017; revised April 6, 2018; accepted April 23, 2018

Abstract: Let X be a set. Let K(x, y) > 0 be ameasure of the a�nity between the data points x and y. We prove
that K has the structure of a Newtonian potential K(x, y) = φ(d(x, y)) with φ decreasing and d a quasi-metric
on X under two mild conditions on K. The �rst is that the a�nity of each x to itself is in�nite and that for
x ≠ y the a�nity is positive and �nite. The second is a quantitative transitivity; if the a�nity between x and y
is larger than λ > 0 and the a�nity of y and z is also larger than λ, then the a�nity between x and z is larger
than ν(λ). The function ν is concave, increasing, continuous from R+ onto R+ with ν(λ) < λ for every λ > 0.
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1 Introduction
The notion of a�nity, when applied to a data set X involves an empirical construction of a real valued kernel
K de�ned on X × X re�ecting some similarity of any two data points x and y in X, given by particular features
shared by x and y. Of course, since the features to be considered relevant depend on the particular situation
and even on the points of view of the observer, the notion of a�nity becomes healthily wide. Even so, some
basic properties seen to be shared by such diversity of a�nity kernels. These properties are the symmetry,
K(x, y) = K(y, x), and the positive de�niteness, i.e., for every �nite subset F of X the matrix (K(x, y) : x ∈
F, y ∈ F) is positive semi-de�nite. Precisely, the inequality

∑
x,y∈F ξxξyK(x, y) ≥ 0 holds for every F ⊂ X with

#(F) < ∞ and every choice of ξx, ξy ∈ R. Of course the most elementary, but useless, a�nity is a diagonal
kernel, K(x, x) > 0, K(x, y) = 0 for x ≠ y. On the other hand, several realistic models contain a natural weak
transitivity which can be seen as a deconcentration of the a�nity outside the diagonal of X × X. As a toy
example, assume that x and y are two individuals, in a homogeneous cultural context, and K(x, y) counts
the number of common watched movies by x and y during the last decade. Usually K(x, y) is much smaller
than the total number of available movies in that period, then K(x, y) re�ects that the individuals x and y
share some criteria for their �lm genres choice. On the other hand, if z is a third individual in the same social
group that shares with y some criteria for their �lm genres choice, then x and z must share some weakened
preferences. For example, if K(x, y) > 100 and K(y, z) > 100 then K(x, z) > 50. What is remarkable is that
these type of transitivity is satis�ed by some very classical kernels as is the Newtonian potential. Before going
to this central point in our approach, let us brie�y review some particular kernel which have been extensively
used. For example in the detection of similarity of documents, the cosine a�nity kernel K(x, y) = 〈x,y〉

‖x‖‖y‖
becomes natural. Here x and y are vectors in a data set X contained in a Hilbert space H (for example RN , N
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large) and 〈x, y〉 is the scalar product in H. At a �rst glance the kernel K(x, y) does not depend of a distance
between x and y. Nevertheless, after the projection of the data set X on the unit sphere {‖x‖ = 1} of H, we
have that with ξ = x

‖x‖ and η = y
‖y‖ , K(ξ , η) = 〈ξ , η〉 = φ(‖ξ − η‖) with φ(t) = 1 − t2

2 . In other words, a�nity
can be written in terms of a decreasing function of the Euclidean distance, when restricted to the unit sphere
of H. Other usual types of a�nity kernels are explicitly built in terms of knownmetrics, such is the case of the
so called RBF-kernel (radial basis function) given by the bell KR(x, y) = e−R‖x−y‖

2
. Here R becomes large if we

expect that the a�nity between x and y becomes more demanding. On the other hand since the preservation
of the Markov property along the family KR requires normalization, for R large we have a Gauss-Weiertrass
kernel with variance σ2 = 1

R . See [4].
Let us observe that if N(x, y) = 1

|x−y| is the Newtonian potential for x and y in R3, then the triangle in-
equality |x − z| ≤ |x − y| + |y − z| shows that if for λ > 0 we have N(x, y) > λ and N(y, z) > λ, then we also
have N(x, z) > λ

2 , that, with λ = 100, agrees with our heuristic transitivity for the example of movies prefer-
ences. In some sense, attending to the historical development of the ideas in classical mechanics, the data
obtained by Tycho Brahe and organized by Johannes Kepler was �nally understood (learnt?) by Isaac Newton
who, after projection on space by elimination of the time variable (as in the case of the cosine a�nity) gave
such a simple attraction or a�nity kernel K(x, y) = N(x, y) = 1

|x−y| as the basic descriptor the gravitational
�eld. In this paper we start by the heuristic consideration of a�nity as attraction. And we search for neces-
sary and su�cient conditions on a positive and symmetric kernel K(x, y) de�ned on a set X in such a way
that K(x, y) = φ(d(x, y)) (as N(x, y) is the composition of φ(s) = 1

s and d(x, y) = |x − y|) with φ decreasing,
φ(0) = +∞, φ(+∞) = 0 and d a quasi-distance on X.

In [1] the authors give necessary and su�cient conditions on families of subsets of a set X in such a way
that these subsets are close to be balls of a quasi-metric on X. A similar situation, in terms of families of
subsets of X×X is considered here, regarding the basic properties of quasi-metric stripes around the diagonal
of X × X. What is more important is that this characterization of quasi-metric bands can be used to provide a
structure result of some a�nity kernels.

Let X be a set. Let K(x, y) be a nonnegative number measuring the a�nity between the two data points
x and y. We shall consider some basic properties of a�nity which will be su�cient to obtain the Newtonian
potential type structure for K. Symmetry; a�nity is a symmetric relation on X ×X (K(x, y) = K(y, x) for every
x, y ∈ X). Positivity; there is positive a�nity between any couple of data points x and y (K(x, y) ≥ 0 for
every x, y ∈ X). Diagonal singularity; the self a�nity is unimprovable. Precisely, the a�nity of each data
point x with itself is +∞ (K(x, x) = +∞ for every x) but for x ≠ y the a�nity is �nite (K(x, y) < ∞ for x ≠ y).
Quantitative Transitivity; if the a�nity between the data points x and y is larger than λ > 0 and the a�nity
between y and z is larger than λ then the a�nity between the points x and z is larger than ν(λ). Here ν is a
nonnegative, concave, increasing and continuous function de�ned on R+ onto R+ such that ν(λ) < λ.

A quasi-metric in X is a nonnegative symmetric function d de�ned on X × X which vanishes only on the
diagonal ∆ of X × X and satis�es a weak form of the triangle inequality, there exists a constant τ (≥ 1) such
that the inequality d(x, z) ≤ τ(d(x, y) + d(y, z)) holds for every x, y and z in X.

The main result of this paper can be stated as follows.

Theorem 1.1. Let X be a set. Let K : X × X → R+ be a symmetric function satisfying the singularity and the
quantitative transitivity conditions. Then there exist a decreasing and continuous function φ de�ned in R+ and
a quasi-metric d on X such that

K(x, y) = φ(d(x, y)).

Moreover, d(x, y) = h(x, y)ρ(x, y)with ρ a metric on X and h a symmetric function such that for some constants
0 < c1 < c2 < ∞ satis�es c1 ≤ h(x, y) ≤ c2 for every x and y in X.

At this point, as one of our referees let us observe, it is important to notice that our hypothesis on K can be
rewritten in terms of 1

K(x,y) =: [x, y] by saying, as in Chittenden [3] § 12, page 26, that [x, y] is a uniformly
regular ècart. That is, [x, y] = 0 if and only if x = y and there is a function f (λ) = 1

ν(λ) such that [x, y] ≤ λ
and [z, y] ≤ λ implies [x, z] ≤ f (λ). In [3] it is shown that the above conditions on [x, z] are su�cient for
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metrizability of the underlying space. In some sense our result provides a quantitative structural version of
this metrization theoremwhen 1

f is nonnegative, concave, increasing and continuous function de�ned onR+

with f (λ) > 1
λ . Moreover we prove a Newtonian potential type structure for 1

[x,y] .
The deepest results on the structure of quasi-metrics are due to Macías and Segovia and are contained

in [8]. See also [2]. The most signi�cant for our purposes is the fact that each quasi-metric is equivalent to a
power of a metric. In other words, given a quasi-metric d on X with constant τ, there exist β ≥ 1 and a metric
ρ on X such that for some positive constants a1 and a2 the inequalities

a1d(x, y) ≤ ρβ(x, y) ≤ a2d(x, y)

hold for every x and y in X. Actually the proof is based in Frink’s lemma of metrization of uniform structures
with a countable basis ([6], [7]).

The rest of the paper is organized in the followingway. Section 2 gives a characterization of quasi-metrics
on a set in terms of properties of the family of stripes in X × X induced by the quasi-metric. Section 3 contains
the construction of the monotonic pro�le. In Section 4 we prove the main result.

2 Quasi-metrics and families of stripes around the diagonal
Let X be a set. The composition of two subsets U and V of X × X is given by V ◦ U = {(x, z) ∈ X × X :
there exists y ∈ X such that (x, y) ∈ U and (y, z) ∈ V}. A subset U in X×X is said to be symmetric if (x, y) ∈ U
if and only if (y, x) ∈ U. Set ∆ to denote the diagonal in X × X, i.e. ∆ =

{
(x, x) : x ∈ X

}
. When a quasi-metric δ

with constant τ is given in X, it is easy to check that the one parameter familyV(r) = {(x, y) ∈ X ×X : δ(x, y) <
r}; r > 0, of stripes around the diagonal of X × X, satis�es

(S1) each V(r) is symmetric;
(S2) ∆ ⊆ V(r), for every r > 0;
(S3) V(r1) ⊆ V(r2), for 0 < r1 ≤ r2;
(S4) ∪r>0V(r) = X × X;
(S5) ∩r>0V(r) ⊆ ∆;
(S6) there exists T ≥ 1 such that V(r) ◦ V(r) ⊆ V(Tr), for every r > 0.

Actually, the constant T in (S6) can be taken to be the triangle constant τ of δ. Set P(X × X) to denote the set
of subsets of X × X.

Theorem 2.1. LetV : R+ → P(X ×X) be a one parameter family of the subsets of X ×X that satis�es (S1) to (S6)
above. Then the function δ de�ned on X × X by δ(x, y) = inf{r > 0 : (x, y) ∈ V(r)} is a quasi-metric on X with
τ ≤ T. Moreover, for each γ > 0, we have

Vδ(r) ⊆ V(r) ⊆ Vδ((1 + γ)r) (2.1)

hold for every r > 0, where Vδ(s) = {(x, y) ∈ X × X : δ(x, y) < s}.

Proof. From (S4) for the family V we see that δ(x, y) is well de�ned as a nonnegative real number. The sym-
metry of δ follows from (S1). The fact that δ vanishes on the diagonal ∆ follows from ∆ ⊆ ∩r>0V(r) which
is contained in (S2). Now, if (x, y) ∈ X × X and δ(x, y) = 0, then, from (S3) for each r > 0, (x, y) ∈ V(r).
Now, from (S5) we necessarily have that (x, y) ∈ ∆ or, in other words x = y. Let us check that δ satis�es
a triangle inequality. Let x, y and z be three points in X. Let ε > 0. Take r1 > 0 and r2 > 0 such that
r1 < δ(x, y) + ε, r2 < δ(y, z) + ε, (x, y) ∈ V(r1) and (y, z) ∈ V(r2). From (S6) with r* = sup{r1, r2}, we
have (x, z) ∈ V(r2) ◦V(r1) ⊆ V(r*) ◦V(r*) ⊆ V(Tr*). Hence δ(x, z) ≤ Tr* ≤ T(r1 + r2) ≤ T(δ(x, y) + δ(y, z)) + 2εT
and we get the triangle inequality with τ = T. Notice �rst that from (S3), Vδ(r) ⊆ V(r) for every r > 0. Take
now (x, y) ∈ V(r), then δ(x, y) ≤ r < (1 + γ)r, so that V(r) ⊆ Vδ((1 + γ)r) for every γ > 0 and every r > 0.
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The next result follows from the above and the metrization theorem of quasi-metric spaces proved in [8]
as an application of Frink’s Lemma on metrizability of uniform spaces with countable bases.

Theorem 2.2. Let V and δ be as in Theorem 2.1. Then, there exist a constant β ≥ 1 and a metric ρ on X such
that

(i) 4−βδ ≤ ρβ ≤ 2βδ;
(ii) Vρβ

(
r
4β

)
⊆ V(r) ⊆ Vρβ (2β+1r) where Vρβ (r) = {(x, y) ∈ X × X : ρβ(x, y) < r}.

Proof. Following the proof of Theorem 2 on page 261 in [8] take α < 1 such that (3T2)α = 2 and β = 1
α > 1.

With ρ themetric provided by themetrization theorem for uniform spaces with countable bases, we have that
4ρ(x, y) ≥ δ(x, y)α ≥ 1

2ρ(x, y). So that
1
4β
δ(x, y) ≤ ρ(x, y)β ≤ 2βδ(x, y),

and (ii) follow from these inequalities and (2.1) with γ = 1.

3 Building the basic pro�le shape
The classical inverse proportionality to the square of the distance between the two bodies for the gravita-
tion �eld, translates into inverse proportionality to the distance for the potential. That is φ(r) = 1

r for the
gravitational potential.

This section is devoted to the construction of the basic shapes of the pro�les that allow the Newtonian
representation of the kernels. This construction requires to solve a functional inequality involving the func-
tion ν that controls the quantitative transitive property of K.

Proposition 3.1. Let ν be a concave, continuous, nonnegative and increasing function de�ned on R+ onto R+

such that ν(λ) < λ for every λ > 0. Then, given M > 1, there exists a continuous, decreasing and convex function
ψ de�ned on R+ with ψ(1) = 1 such that the inequality

ψ(ν(λ)) ≤ Mψ(λ) (3.1)

holds for every λ > 0.

Proof. Set λ0 = 1, λ1 = ν(1) and λ−1 = ν−1(1). Notice that λ1 < 1 and λ−1 > 1. In fact, λ1 = ν(1) < 1
and 1 = ν−1(ν(1)) = ν−1(λ1) < ν−1(1) = λ−1. Set for k ∈ N, λk = ν(λk−1) and λ−k = ν−1(λ−k+1). Notice that
λk decreases as k → ∞ and increases when k → −∞. The continuity of ν and the property ν(λ) < λ for
every positive λ imply that λk → 0 as k → ∞ and λk → ∞ as k → −∞ monotonically. This basic sequence
{λk : k ∈ Z} allows to construct a functionψ in the followingway. Setψ(λk) = Mk, k ∈ Z and for λ ∈ [λk+1, λk]
de�ne ψ(λ) by linear interpolation. It is clear that ψ is continuous, decreasing, ψ(0+) = +∞, ψ(∞) = 0,
ψ(1) = ψ(λ0) = M0 = 1 and that ψ is convex. We only have to check that ψ solves inequality (3.1). On the
sequence {λk : k ∈ Z}, (3.1) becomes an equality. In fact, ψ(ν(λk)) = ψ(λk+1) = Mk+1 = MMk = Mψ(λk).

Let us now take λ ∈ (λk+1, λk) for k ∈ Z. For such λ, ψ(λ) satis�es

Mk+1 −Mk

λk − λk+1
= M

k+1 − ψ(λ)
λ − λk+1

. (3.2)

On the other hand, since λk+1 < λ < λk, we have that λk+2 = ν(λk+1) < ν(λ) < ν(λk) = λk+1. Hence ψ(ν(λ))
satis�es

Mk+2 −Mk+1

λk+1 − λk+2
= M

k+2 − ψ(ν(λ))
ν(λ) − λk+2

. (3.3)

From (3.2) and (3.3) we get
ψ(λ) = Mk+1 −Mk(M − 1) λ − λk+1λk − λk+1



A�nity and Distance | 93

and
ψ(ν(λ)) = M

(
Mk+1 −Mk(M − 1) ν(λ) − λk+2λk+1 − λk+2

)
.

Now, since ν is concave, we have for λk+1 < λ < λk that

ν(λ) − ν(λk+1)
λ − λk+1

≥ ν(λk) − ν(λk+1)λk − λk+1
,

hence, ψ(ν(λ)) ≤ Mψ(λ).

The basic shapes for the pro�les φ in our main result will be given as composition of the inverse η of ψ with
power laws.

4 Proof of the main result
Let us start by rewriting, formally, the properties of symmetry, positivity, singularity and transitivity of a data
a�nity kernel K(x, y) de�ned on the set X × X. Let K : X × X → R such that

(K1) K(x, y) = K(y, x), for every x and y in X;
(K2) K(x, y) > 0, for every x and y in X;
(K3) K(x, y) = +∞ if and only if x = y;
(K4) there exists a continuous, concave, increasing and nonnegative function ν de�ned on R+ onto R+, with

ν(λ) < λ, λ > 0, such that K(x, z) > ν(λ) whenever there exists y ∈ X with K(x, y) > λ and K(y, z) > λ, for
every λ > 0.

With these properties, Theorem 1.1 can be restated as follows.

Theorem 4.1. Let X be a set. Let K be a kernel on X × X satisfying properties(K1) to (K4). Then, there exist a
metric ρ on X, a real number β ≥ 1, a function h(x, y) de�ned on X × X with 2−1/β ≤ h(x, y) ≤ 4 and a function
φ : R+ → R+ continuous, decreasing with φ(0+) = +∞ and φ(∞) = 0, such that

K(x, y) = φ(h(x, y)ρ(x, y)).

Proof. Let ν be the function provided by (K4). Let ψ be given by Proposition 3.1 with this function ν, and
M = 2. Hence ψ(ν(λ)) ≤ 2ψ(λ) for every λ > 0. Take η = ψ−1 and V : R+ → P(X × X) given by

V(r) = Eη(r) = {(x, y) : K(x, y) > η(r)}.

Let is check that V satis�es properties (S1) to (S6) in Section 2 with constant T = 2 (= M). From (K1) we see
that each Eλ is symmetric, in particular V(r) is symmetric for every r > 0. Since K(x, x) = +∞, from (K3), we
have that ∆ ⊆ Eη(r) = V(r) for r > 0. In order to check (S3) take 0 < r1 < r2 < ∞. Hence η(r1) > η(r2), so that
K(x, y) > η(r1) implies K(x, y) > η(r2). Or, in other words Eη(r1) ⊂ Eη(r2). Or V(r1) ⊆ V(r2). The positivity (K2)
of K(x, y) shows (S4). Property (S5) ofV follows from (S3). To prove (S6) forV, take r > 0. If (x, z) ∈ V(r)◦V(r) =
Eη(r) ◦ Eη(r), then there exists y ∈ X such that K(x, y) > η(r) and K(y, z) > η(r). From (K4), K(x, z) > ν(η(r)).
Now applying (3.1) with λ = ψ−1(r) we get K(x, z) > ν(ψ−1(r)) ≥ η(2r), or (x, z) ∈ Eη(2r) = V(2r). Hence (S6)
for V holds with T = 2. We can, then apply the results of Section 2. First to produce a quasi-metric δ as in
Theorem 2.1 and then to provide the metric ρ and the exponent β given in Theorem 2.2. Thus, for every r > 0,
Vρβ

(
r
4β

)
⊆ V(r) = Eη(r) ⊆ Vρβ (2β+1r), where ρ is a metric in X and, since T can be taken to be equal to 2,

β = log2 12 works. The above inclusions, taking s = r1/β, are equivalent to{
ρ < s

4
}
⊆
{
(ψ ◦ K)1/β > s

}
⊆
{
ρ < 21+1/βs

}
(4.1)

for every s > 0. Let x and y be two di�erent points in X. Since 0 < K(x, y) < ∞ so is (ψ ◦ K)1/β(x, y). There
exists, then, a unique j ∈ Z (j = j(x, y)) such that 2j ≤ (ψ ◦ K)1/β(x, y) < 2j+1. By the second inclusion in (4.1)
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we see that ρ(x, y) < 21/β2j ≤ 21/β(ψ ◦ K)1/β(x, y). On the other hand, since (ψ ◦ K)1/β(x, y) < 2j+1, from the
�rst inclusion in (4.1) we necessarily have that ρ(x, y) ≥ 2j+1

4 > 1
4 (ψ ◦ K)

1/β(x, y). Hence for x ≠ y we have

1
4(ψ ◦ K)

1/β ≤ ρ ≤ 21/β(ψ ◦ K)1/β .

Set h(x, y) = (ψ◦K)1/β
ρ(x,y) for x ≠ y and h(x, x) = 1. Then 1

21/β ≤ h ≤ 4 and K(x, y) = ψ−1((h(x, y)ρ(x, y))β) =
φ(h(x, y)ρ(x, y)) with φ(r) = ψ−1(rβ) = η(rβ).

Notice that since h is symmetric and bounded above and below by positive constants the function
d(x, y) = h(x, y)ρ(x, y) is a quasi-metric. But actually d is better than a general quasi-metric since its tri-
angular inequality constant can be taken to be independent of the length of chains. Precisely, d(x1, xm) ≤
22+1/β

∑m−1
j=1 d(xj , xj+1).

Let us observe also that Newtonian type power laws are obtained when ν(λ) = aλ for a < 1. In fact, with
m = 1

log2 a
< 0, ψ(r) = rm solves the equation (aλ)m = 2λm. Hence φ becomes also a power law.

Let us �nally state and prove that the conditions on K are necessary to have a Newtonian structure for K.

Proposition 4.2. Let (X, d) be a quasi-metric space with triangular constant τ. Let φ be a positive function
de�ned on R+ such that, φ is C2(R+), convex, decreasing, φ(0+) = +∞ and φ(+∞) = 0. Let K : X × X → R+ be
given by K(x, y) = φ(d(x, y)). Then there exists a positive concave function ν de�ned onR+ increasing, ν(0) = 0,
ν(+∞) = +∞ such that if K(x, z) > λ > 0 and K(z, y) > λ for some z ∈ X, we have that K(x, y) > ν(λ) with
ν(λ) = φ(2τφ−1(λ)). Moreover, ν(λ) < λ for every λ > 0.

Proof. Let x, y, and z be as in the statement. In particular, d(x, z) < φ−1(λ) and d(z, y) < φ−1(λ). Hence

d(x, y) ≤ τ(d(x, z) + d(z, y)) < 2τφ−1(λ).

So that K(x, y) > φ(2τφ−1(λ)) = ν(λ). Let us check that the function ν satis�es the required properties. Notice
�rst that ν(λ) < λ follows directly from the decreasing of φ. The derivative of ν is given by

ν′(λ) = φ′(2τφ−1(λ)) 2τ
φ′(φ−1(λ)) .

Hence ν′ > 0 for every λ > 0 and ν is increasing. The facts that ν(0+) = 0 and ν(+∞) = +∞ follows from
φ(0+) = +∞ and φ(+∞) = 0. Let us �nally check the concavity of ν. Taking derivative with respect to λ in the
above formula for ν′(λ) we see that

ν′′(λ) = 2τ
φ′′(2τφ−1(λ))2τ − φ′(2τφ−1(λ))φ

′′(φ−1(λ))
φ′(φ−1(λ))

[φ′(φ−1(λ))]2 .

Set s = φ−1(λ), hence the signof ν′′ is de�nedby the signof 2τφ′′(2τs)−φ′(2τs)φ
′′(s)
φ′(s) . Since [φ

′(2τs)φ′(s)]′ ≥ 0
we see that

2τφ′′(2τs)φ′(s) − φ′(2τs)φ′′(s) = [φ′(2τs)φ′(s)]′ − 2φ′′(s)φ′(2τs)
≥ −2φ′′(s)φ′(2τs) > 0.

Acknowledgements: The authors gratefully acknowledge the comments of one of the referees who also
pointed out the related results in the early paper [3] on metrizability of topological spaces.

The authors acknowledge the support of the CONICET, ANPCyT-MINCYT and UNL. Research partially
supported by ANPCyT-MINCyT grant PICT-2015-3631.

References
[1] H. Aimar, L. Forzani, and R. Toledano Balls and quasi-metrics: a space of homogeneous type modeling the real analysis

related to the Monge-Ampère equation. J. Fourier Anal. Appl., 4(4/5):377–381, 1998.



A�nity and Distance | 95

[2] H. Aimar, B. Ia�ei, and L. Nitti. On theMacías-Segovia metrization of quasi-metric spaces. Rev. Un. Mat. Argentina, 41(2):67–
75, 1998.

[3] E. W. Chittenden. On the metrization problem and related problems in the theory of abstract sets. Bull. Amer. Math. Soc.,
33:13–34, 1927.

[4] R. R. Coifman, and S. Lafon. Di�usion maps Appl. Comput. Harmon. Anal., 21(1):5–30, 2006.
[5] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker. Geometric di�usions as a tool for

harmonic analysis and structure de�nition of data: Di�usion maps. Proceedings of the National Academy of Sciences of the
United States of America, 102(21):7426–7431, 2005.

[6] A. H. Frink. Distance functions and the metrization problem. Bull. Amer. Math. Soc., 43(2):133–142, 1937.
[7] J. L. Kelley. General topology. Springer-Verlag, New York-Berlin, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto,

Ont.], Graduate Texts in Mathematics, No. 27.
[8] R. A. Macías and C. Segovia. Lipschitz functions on spaces of homogeneous type. Adv. in Math., 33(3):257–270, 1979.


	1 Introduction
	2 Quasi-metrics and families of stripes around the diagonal
	3 Building the basic profile shape
	4 Proof of the main result

