Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access December 21, 2018

Lipschitz Extensions to Finitely Many Points

  • Giuliano Basso EMAIL logo

Abstract

We consider Lipschitz maps with values in quasi-metric spaces and extend such maps to finitely many points. We prove that in this context every 1-Lipschitz map admits an extension such that its Lipschitz constant is bounded from above by the number of added points plus one. Moreover, we prove that if the source space is a Hilbert space and the target space is a Banach space, then there exists an extension such that its Lipschitz constant is bounded from above by the square root of the total of added points plus one. We discuss applications to metric transforms.

MSC 2010: 54C20; 30L05; 15A45

References

[1] Keith Ball. Markov chains, riesz transforms and lipschitz maps. Geometric & Functional Analysis GAFA, 2(2):137-172, 1992.10.1007/BF01896971Search in Google Scholar

[2] Alexander Brudnyi and Yuri Brudnyi. Methods of geometric analysis in extension and trace problems, volume 1. Birkhäuser, 2011.10.1007/978-3-0348-0209-3Search in Google Scholar

[3] Alexander Brudnyi and Yuri Brudnyi. Methods of geometric analysis in extension and trace problems, volume 2. Birkhäuser, 2012.10.1007/978-3-0348-0209-3Search in Google Scholar

[4] Miroslav Fiedler and Vlastimil Pták. On matrices with non-positive off-diagonal elements and positive principal minors. Czechoslovak Mathematical Journal, 12(3):382-400, 1962.10.21136/CMJ.1962.100526Search in Google Scholar

[5] Branko Grünbaum. Projection constants. Transactions of the American Mathematical Society, 95(3):451-465, 1960.10.1090/S0002-9947-1960-0114110-9Search in Google Scholar

[6] C.G.J. Jacobi. De determinantibus functionalibus. Journal für die reine und angewandteMathematik, 22:319-359, 1841. URL http://eudml.org/doc/147138.10.1515/crll.1841.22.319Search in Google Scholar

[7] Charles R Johnson. Inverse m-matrices. Linear Algebra and its Applications, 47:195-216, 1982.10.1016/0024-3795(82)90238-5Search in Google Scholar

[8] William B. Johnson and N. Lovasoa Randrianarivony. `p(p > 2) does not coarsely embed into a hilbert space. Proceedings of the American Mathematical Society, 134(4):1045-1050, 2006. ISSN 00029939, 10886826. URL http://www.jstor.org/stable/4098068.10.1090/S0002-9939-05-08415-7Search in Google Scholar

[9] William B Johnson, Joram Lindenstrauss, and Gideon Schechtman. Extensions of lipschitz maps into banach spaces. Israel Journal of Mathematics, 54(2):129-138, 1986.10.1007/BF02764938Search in Google Scholar

[10] J. Kuelbs. Positive definite symmetric functions on linear spaces. Journal ofMathematical Analysis and Applications, 42(2): 413-426, 1973.10.1016/0022-247X(73)90148-0Search in Google Scholar

[11] Urs Lang and Thilo Schlichenmaier. Nagata dimension, quasisymmetric embeddings, and lipschitz extensions. International Mathematics Research Notices, 2005(58):3625, 2005. 10.1155/IMRN.2005.3625. URL +http://dx.doi.org/10.1155/IMRN.2005.3625.10.1155/IMRN.2005.3625Search in Google Scholar

[12] Urs Lang, Branka Pavlovic, and Viktor Schroeder. Extensions of lipschitz maps into hadamard spaces. Geometric & Functional Analysis GAFA, 10(6):1527-1553, 2000.10.1007/PL00001660Search in Google Scholar

[13] James R Lee and Assaf Naor. Extending lipschitz functions via random metric partitions. Inventiones mathematicae, 160(1): 59-95, 2005.10.1007/s00222-004-0400-5Search in Google Scholar

[14] Lech Maligranda. Indices and interpolation. Instytut Matematyczny Polskiej Akademi Nauk, 1985. URL http://eudml.org/doc/268615.Search in Google Scholar

[15] Thomas L Markham. Nonnegative matrices whose inverses are m-matrices. Proceedings of the American Mathematical Society, 36(2):326-330, 1972.10.2307/2039153Search in Google Scholar

[16] Manor Mendel and Assaf Naor. Metric cotype. Annals of Mathematics, 168(1):247-298, 2008.10.4007/annals.2008.168.247Search in Google Scholar

[17] Manor Mendel and Assaf Naor. A note on dichotomies for metric transforms. arXiv preprint arXiv:1102.1800, 2011.Search in Google Scholar

[18] Manor Mendel and Assaf Naor. Spectral calculus and lipschitz extension for barycentric metric spaces. Analysis and Geometry in Metric Spaces, 1:163-199, 2013. URL http://eudml.org/doc/266565.10.2478/agms-2013-0003Search in Google Scholar

[19] Manor Mendel and Assaf Naor. A relation between finitary lipschitz extension moduli. arXiv preprint arXiv:1707.07289, 2017.Search in Google Scholar

[20] Assaf Naor and Yuval Rabani. On lipschitz extension from finite subsets. Israel Journal of Mathematics, 219(1):115-161, 2017.10.1007/s11856-017-1475-1Search in Google Scholar

[21] Alexander Ostrowski. Über die determinanten mit überwiegender hauptdiagonale. Commentarii Mathematici Helvetici, 10 (1):69-96, 1937.10.1007/BF01214284Search in Google Scholar

[22] George Poole and Thomas Boullion. A survey on m-matrices. SIAM review, 16(4):419-427, 1974.10.1137/1016079Search in Google Scholar

[23] I. J. Schoenberg. Metric spaces and completely monotone functions. Annals of Mathematics, 39(4):811-841, 1938. ISSN 0003486X. URL http://www.jstor.org/stable/1968466.10.2307/1968466Search in Google Scholar

[24] James H. Wells and L.R. Williams. Embeddings and extensions in analysis, volume Band 84 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, New York-Heidelberg, 1975. ISBN 3-540-07067-2.Search in Google Scholar

Received: 2018-11-14
Accepted: 2018-11-14
Published Online: 2018-12-21
Published in Print: 2018-12-01

© by Giuliano Basso, published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 27.3.2023 from https://www.degruyter.com/document/doi/10.1515/agms-2018-0010/html
Scroll Up Arrow